Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture
详细信息    查看全文
  • 作者:Yongsheng Sun ; Yuexin Han ; Xinchao Wei…
  • 关键词:Oolitic iron ore ; Coal ; based reduction ; Non ; isothermal kinetics ; Kinetic parameters ; Thermogravimetric analysis ; Reduction mechanism
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:703-715
  • 全文大小:1,997 KB
  • 参考文献:1.Song SX, Campos-Toro EF, Zhang YM, Lopez-Valdivieso A. Morphological and mineralogical characterizations of oolitic iron ore in the Exi region China. Int J Min Metall Mater. 2013;20(2):113–8.CrossRef
    2.Zimmels Y, Weissberger S, Lin IJ. Effect of oolite structure on direct reduction of oolitic iron ores. Int J Miner Process. 1988;24:55–71.CrossRef
    3.Abro MI, Pathan AG, Mallah AH. Liberation of oolitic hematite grains from iron ore, Dilband Mines Pakistan. Mehran Univ Res J Eng Technol. 2011;30:329–38.
    4.Adedeji FA, Sale FR. Characterization and reducibility of Itakpe and Agbaja (Nigerian) iron ores. Clay Miner. 1984;19:843–56.CrossRef
    5.Manieh AA. Oolite liberation of oolitic iron ore, Wadi Fatima, Saudi Arabia. Int J Miner Process. 1984;13:187–92.CrossRef
    6.Srivastava U, Kawatra SK. Strategies for processing low-grade iron ore minerals. Miner Process Extr M. 2009;30(4):361–71.CrossRef
    7.Sun YS, Han YX, Gao P, Wang ZH, Ren DZ. Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation. Int J Miner Metall Mater. 2013;20(5):411–9.CrossRef
    8.Yu W, Sun TC, Kou J, Wei YX, Xu CY, Liu ZZ. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int. 2013;53(3):427–33.CrossRef
    9.Yu W, Sun TC, Liu ZZ, Kou J, Xu CY. Effects of particle sizes of iron ore and coal on the strength and reduction of high phosphorus oolitic hematite-coal composite briquettes. ISIJ Int. 2014;54(1):56–62.CrossRef
    10.Li SF, Sun YS, Han YX, Shi GQ, Gao P. Fundamental research in utilization of an oolitic hematite by deep reduction. Adv Mater Res. 2011;158:106–12.CrossRef
    11.Li KQ, Ni W, Zhu M, Zheng MJ, Li Y. Iron extraction from oolitic iron ore by a deep reduction process. J Iron Steel Res Int. 2011;18(8):9–13.CrossRef
    12.Sun YS, Han YX, Gao P, Ren DZ. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore. Int J Miner Metall Mater. 2014;21(4):331–8.CrossRef
    13.Yin J, Lv X, Bai C, Qiu G, Ma S, Xie B. Dephosphorization of iron ore bearing high phosphorous by carbothermic reduction assisted with microwave and magnetic separation. ISIJ Int. 2012;52(9):1579–84.CrossRef
    14.Li YL, Sun TC, Kou J, Guo Q, Xu CY. Study on phosphorus removal of high-phosphorus oolitic hematite by coal-based direct reduction and magnetic separation. Miner Process Extr M. 2014;35(1):66–73.CrossRef
    15.Sun YS, Gao P, Han YX, Ren DZ. Reaction behavior of iron minerals and metallic iron particles growth in coal-based reduction of an oolitic iron ore. Ind Eng Chem Res. 2013;52(6):2323–9.CrossRef
    16.Han YX, Sun YS, Gao P, Li YJ, Mu YF. Particle size distribution of metallic iron during coal-based reduction of an oolitic iron ore. Miner Metall Process. 2014;31(3):169–74.
    17.Park H, Sahajwalla V. Effect of alumina and silica on the reaction kinetics of carbon composite pellets at 1 473 K. ISIJ Int. 2014;54(1):49–55.CrossRef
    18.Huang B-H, Lu W-K. Kinetics and mechanisms of reactions in iron ore/coal composites. ISIJ Int. 1993;33(10):1055–61.CrossRef
    19.Dutta SK, Ghosh A. Study of nonisothermal reduction of iron ore–coal/char composite pellet. Metall Mater Trans B. 1994;25(1):15–26.CrossRef
    20.Sun S, Lu WK. A theoretical investigation of kinetics and mechanisms of iron ore reduction in an ore/coal composite. ISIJ Int. 1999;39(2):123–9.CrossRef
    21.Sun YS, Han YX, Gao P, Li GF. Investigation of kinetics of coal based reduction of oolitic iron ore. Ironmak Steelmak. 2014;41(10):763–8.CrossRef
    22.Sun S, Lu WK. Building of a mathematical model for the reduction of iron ore in ore/coal composites. ISIJ Int. 1999;39(2):130–8.CrossRef
    23.El-Geassy AA, Abdel Halim KS, Bahgat M, Mousa EA, El-Shereafy EE, El-Tawi AA. Carbothermic reduction of Fe2O3/C compacts: comparative approach to kinetics and mechanism. Ironmak Steelmak. 2013;40(7):534–44.CrossRef
    24.Hou B, Zhang H, Li H, Zhu Q. Study on kinetics of iron oxide reduction by hydrogen. Chin J Chem Eng. 2012;20(1):10–7.CrossRef
    25.Jozwiak WK, Kaczmarek E, Maniecki TP, Ignaczak W, Maniukiewicz W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl Catal A-Gen. 2007;326:17–27.CrossRef
    26.Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: Part I: low temperature reduction of hematite. Thermochim Acta. 2006;447:89–100.CrossRef
    27.Huang MX, Zhou CR, Han XW. Investigation of thermal decomposition kinetics of taurine. J Therm Anal Calorim. 2013;113:589–93.CrossRef
    28.Otero M, Calvo LF, Gil MV, García AI, Morán A. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2008;99:6311–9.CrossRef
    29.Janković B, Adnađević B, Mentus S. The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method. Thermochim Acta. 2007;456:48–55.CrossRef
    30.Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRef
    31.Guinesi LS, Ribeiro CA, Crespi MS, Veronezi AM. Tin (II)-EDTA complex: kinetic of thermal decomposition by non-isothermal procedures. Thermochim Acta. 2004;414:35–42.CrossRef
    32.Jankovic B, Mentus S. Model-fitting and model-free analysis of thermal decomposition of palladium acetylacetonate [Pd (acac)2]. J Therm Anal Calorim. 2008;94(2):395–403.CrossRef
    33.Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRef
    34.Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4(3):323–8.CrossRef
    35.Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.CrossRef
    36.Škvára F, Šesták J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method. J Them Anal. 1975;8(3):477–89.CrossRef
    37.Galwey AK. Thermal decomposition of ionic solid. Amsterdam: Elsevier; 1984.
    38.Hu RZ, Shi QZ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008.
    39.Li P, Yu QB, Xie HQ, Qin Q, Wang K. CO2 gasification rate analysis of Datong coal using slag granules as heat carrier for heat recovery from blast furnace slag by using a chemical reaction. Energ Fuel. 2013;27:4810–7.CrossRef
    40.Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim Acta. 1995;267:29–44.CrossRef
    41.Vlaev LT, Markovska IG, Lyubchev LA. Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta. 2003;406:1–7.CrossRef
    42.Li P, Yu QB, Qin Q, Lei W. Kinetics of CO2/coal gasification in molten blast furnace slag. Ind Eng Chem Res. 2012;51:15872–83.CrossRef
    43.Carvalho RJD, Netto PGQ, D’abreu JC. Kinetics of reduction of composite pellets containing iron ore and carbon. Can Metall Q. 1994;33(3):217–25.CrossRef
    44.Zhu DQ, Chun TJ, Pan J, Zhang JL. Influence of basicity and MgO content on metallurgical performances of Brazilian specularite pellets. Int J Miner Process. 2013;125:51–60.CrossRef
    45.Kubaschewski O (1979) Metallurgical thermochemistry. Materials science and technology. New York.
  • 作者单位:Yongsheng Sun (1)
    Yuexin Han (1)
    Xinchao Wei (2)
    Peng Gao (1)

    1. College of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
    2. College of Engineering, The State University of New York Polytechnic Institute, Utica, NY, 13502, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Mixtures of oolitic iron ore and coal with different C/O molar ratios (1.5, 2.0, 2.5, and 3.0) were heated from 600 to 1300 °C at four heating rates (5, 10, 15, and 20 °C min−1). The degree of reduction and reduction rate were calculated from the measurements of weight loss and off-gas composition using thermogravimetry technique and NDIR gas analyzer. The kinetic parameters (the activation energy, pre-exponential factor, and reduction model) were determined by Ozawa–Flynn–Wall kinetic method and by Šatava–Šesták method. It was found that, as temperature increased, the degree of reduction increased, while the reduction rate rapidly increased first, subsequently stabilized, and then decreased. The non-isothermal reduction of oolitic iron ore with coal was significantly influenced by both heating rate and C/O molar ratio, although the impact of the latter was much less. The values of activation energy estimated by Ozawa–Flynn–Wall method ranged from 159.2 to 169.6 kJ mol−1. The mechanism function for the non-isothermal coal-based reduction of oolitic iron ore was D5 reaction model. The non-isothermal kinetic models for coal-based reduction of oolitic iron ore were proposed based on the obtained kinetic parameters. The iron oxide in the oolitic ore was reduced to metallic iron in the sequence of Fe2O3 → Fe3O4 → FeO (FeAl2O4, Fe2SiO4) → Fe. Phase change and reduction mechanism shift were observed during the reduction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700