Effects of wildfire on long-term soil CO2 concentration: implications for karst processes
详细信息    查看全文
  • 作者:Katie Coleborn ; Andy Spate ; Mark Tozer ; Martin S. Andersen…
  • 关键词:Speleothem ; Fire ; Carbon dioxide ; Soil CO2 concentration ; Paleoclimate reconstruction ; Karst
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:4
  • 全文大小:2,914 KB
  • 参考文献:Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A Balkema, RotterdamCrossRef
    Armstrong R, Turner KD, McDougall KL et al (2013) Plant communities of the south eastern highlands and Australian Alps within the Murrumbidgee catchment of New South Wales. Cunninghamia 13:125–265CrossRef
    Baker A, Smart PL, Ford DC (1993) Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeogr Palaeoclimatol Palaeoecol 100:291–301. doi:10.​1016/​0031-0182(93)90059-R CrossRef
    Bárcenas-Moreno G, Bååth E (2009) Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biol Biochem 41:2517–2526. doi:10.​1016/​j.​soilbio.​2009.​09.​010 CrossRef
    Bradstock RA, Auld T (1995) Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J Appl Ecol 32:76–84CrossRef
    Brook G, Folkoff ME, Box E (1983) World model of soil carbon dioxide. Earth Surf Process Landforms 8:79–88CrossRef
    Brook GA, Sheen SW, Rafter MA et al (1999) A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar. Holocene 9:695–705. doi:10.​1191/​0959683996779077​90 CrossRef
    Calmels D, Gaillardet J, François L (2014) Sensitivity of carbonate weathering to soil CO2 production by biological activity along a temperate climate transect. Chem Geol 390:74–86. doi:10.​1016/​j.​chemgeo.​2014.​10.​010 CrossRef
    Carcaillet C, Almquist H, Asnong H et al (2002) Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49:845–863CrossRef
    Carter M, Gregorich E (2007) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton
    Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.​1007/​s00442-004-1788-8 CrossRef
    Certini G, Corti G, Agnelli A, Sanesi G (2003) Carbon dioxide efflux and concentrations in two soils under temperate forests. Biol Fertil Soils 37:39–46. doi:10.​1007/​s00374-002-0560-7
    Chang Huang C, Pang J, Chen S et al (2006) Charcoal records of fire history in the Holocene loess–soil sequences over the southern Loess Plateau of China. Palaeogeogr Palaeoclimatol Palaeoecol 239:28–44. doi:10.​1016/​j.​palaeo.​2006.​01.​004 CrossRef
    Costin A, Hallsworth E, Woof M (1952) Studies in pedogenesis in New South Wales III. The alpine humus soils. J Soil Sci 3:190–218CrossRef
    Cowan B, Osborne M, Banner J (2013) Temporal variability of cave-air CO2 in central Texas. J Cave Karst Stud 75:38–50. doi:10.​4311/​2011ES0246 CrossRef
    Cuthbert MO, Rau GC, Andersen MS et al (2014) Evaporative cooling of speleothem drip water. Sci Rep 4:5162. doi:10.​1038/​srep05162 CrossRef
    Davidson E, Savage K, Trumbore S, Borken W (2006) Vertical partitioning of CO2 production within a temperate forest soil. Glob Chang 12:944–956. doi:10.​1111/​j.​1365-2486.​2006.​01142.​x CrossRef
    Dreybrodt W (1999) Chemical kinetics, speleothem growth and climate. Boreas 28:347–356CrossRef
    Froyd CA (2006) Holocene fire in the Scottish Highlands: evidence from macroscopic charcoal records. Holocene 16:235–249. doi:10.​1191/​0959683606hl910r​p CrossRef
    Genty D, Baker A, Vokal B (2000) Intra- and inter-annual growth rate of modern stalagmites. Chem Geol 176:191–212CrossRef
    Gill A, Catling P (2002) Fire regimes and biodiversity of forested landscapes of southern Australia. In: Bradstock RA, Williams JE, Gill MA (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 352–369
    Ginzburg O, Steinberger Y (2012) Effects of forest wildfire on soil microbial-community activity and chemical components on a temporal-seasonal scale. Plant Soil 360:243–257. doi:10.​1007/​s11104-012-1243-2 CrossRef
    Goede A, McDermott F, Hawkesworth C et al (1996) Evidence of Younger Dryas and Neoglacial cooling in a Late Quaternary palaeotemperature record from a speleothem in eastern Victoria, Australia. J Quat Sci 11:1–7. doi:10.​1002/​(SICI)1099-1417(199601/​02)11:​1<1:​AID-JQS219>3.​0.​CO;2-2 CrossRef
    Gongalsky KB, Malmström A, Zaitsev AS et al (2012) Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Appl Soil Ecol 59:73–86. doi:10.​1016/​j.​apsoil.​2012.​03.​017 CrossRef
    Granged AJP, Jordán A, Zavala LM et al (2011a) Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 167–168:125–134. doi:10.​1016/​j.​geoderma.​2011.​09.​011 CrossRef
    Granged AJP, Zavala LM, Jordán A, Bárcenas-Moreno G (2011b) Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma 164:85–94. doi:10.​1016/​j.​geoderma.​2011.​05.​017 CrossRef
    Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration : a review of methods and observations. Biogeochemistry 48:115–146CrossRef
    Hart SC, DeLuca TH, Newman GS et al (2005) Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manag 220:166–184. doi:10.​1016/​j.​foreco.​2005.​08.​012 CrossRef
    Holmgren K, Tyson P, Moberg A, Svanered O (2001) A preliminary 3000-year regional temperature reconstruction for South Africa. South African J Sci 97:49–51
    Hou J, Tan M, Liu D (2002) Counting chronology and climate records with about 1000 annual layers of a Holocene stalagmite from the Water Cave in Liaoning Province, China. Sci China 45:385–391CrossRef
    Jenerette GD, Scott RL, Barron-Gafford GA, Huxman TE (2009) Gross primary production variability associated with meteorology, physiology, leaf area, and water supply in contrasting woodland and grassland semiarid riparian ecosystems. J Geophys Res. doi:10.​1029/​2009JG001074
    Jenkins M, Adams MA (2010) Vegetation type determines heterotrophic respiration in subalpine Australian ecosystems. Glob Chang Biol 16:209–219. doi:10.​1111/​j.​1365-2486.​2009.​01954.​x CrossRef
    Keith D (2004) Ocean shores to desert dunes: the native vegetation of New South Wales and the ACT. NSW Department of Environment and Conservation, Sydney
    Keller CK, White TM, O’Brien R, Smith JL (2006) Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem. J Geophys Res. doi:10.​1029/​2005JG000157
    Knox RB, Ladiges P, Saint R (2001) Biology. McGraw-Hill, Roseville
    Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi:10.​1016/​j.​soilbio.​2005.​08.​020 CrossRef
    Lindenmayer DB, Burgman M (2005) Fire and biodiversity. Practical Conservation Biology CSIRO Publishing, Melbourne, pp 293–317
    McCarron JK, Knapp AK (2003) C3 shurb expansion in a C4 grassland: positive post-fire responses in resources and shoot growth. Am J Bontany 90:1496–1501CrossRef
    McDonald J (2004) The 2002–2003 El Niño recorded in Australian cave drip waters: implications for reconstructing rainfall histories using stalagmites. Geophys Res Lett. doi:10.​1029/​2004GL020859
    McDonald J, Drysdale R (2007) Hydrology of cave drip waters at varying bedrock depths from a karst system in southeastern Australia. Hydrol Process 1748:1737–1748. doi:10.​1002/​hyp CrossRef
    McDonald J, Drysdale R, Hill D et al (2007) The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia. Chem Geol 244:605–623. doi:10.​1016/​j.​chemgeo.​2007.​07.​007 CrossRef
    Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061. doi:10.​5194/​bg-8-2047-2011 CrossRef
    Moriarty KC, McCulloch MT, Wells RT, McDowell MC (2000) Mid-Pleistocene cave fills, megafaunal remains and climate change at Naracoorte, South Australia: towards a predictive model using U-Th dating of speleothems. Palaeogeogr Palaeoclimatol Palaeoecol 159:113–143. doi:10.​1016/​S0031-0182(00)00036-5 CrossRef
    Morrison DA, Le Brocque AF, Clarke PJ (1995) An assessment of some improved techniques for estimating the abundance (frequency) of sedentary organisms. Vegetation 120:131–145CrossRef
    Munoz A, Sen A, Sancho C, Genty D (2009) Wavelet analysis of late holocene stalagmite records from Ortigosa Caves in Northern Spain. J Cave Karst Stud 71:63–72
    Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi:10.​1016/​S0378-1127(99)00032-8 CrossRef
    Pereira P, Cerda A, Jordan A et al (2013) Spatio-temporal vegetation recuperation after a grassland fire in Lithuania. Procedia Environ Sci 19:856–864. doi:10.​1016/​j.​proenv.​2013.​06.​095 CrossRef
    Pharo EJ, Meagher DA, Lindenmayer DB (2013) Bryophyte persistence following major fire in eucalypt forest of southern Australia. For Ecol Manag 296:24–32. doi:10.​1016/​j.​foreco.​2013.​01.​018 CrossRef
    Proctor CJ, Baker A, Barnes WL, Gilmour MA (2000) A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim Dyn 16:815–820. doi:10.​1007/​s003820000077 CrossRef
    Qin X, Tan M, Liu T et al (1999) Spectral analysis of a 1000-year stalagmite lamina-thickness record from Shihua Cavern, Beijing, China, and its climatic significance. Holocene 9:689–694. doi:10.​1191/​0959683996710194​13 CrossRef
    Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90CrossRef
    Risk D, Kellman L, Beltrami H (2002) Carbon dioxide in soil profiles: production and temperature dependence. Geophys Res Lett 29:1–4CrossRef
    Rutlidge H, Baker A, Marjo CE et al (2014) Dripwater organic matter and trace element geochemistry in a semi-arid karst environment: implications for speleothem paleoclimatology. Geochim Cosmochim Acta 135:217–230. doi:10.​1016/​j.​gca.​2014.​03.​036 CrossRef
    Schoffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co., Austin, pp 81–98
    Tan M (2003) Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys Res Lett 30:1617. doi:10.​1029/​2003GL017352 CrossRef
    Tan L, Shen C, Cai Y et al (2014) Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China. Quat Res 81:181–188. doi:10.​1016/​j.​yqres.​2013.​12.​001 CrossRef
    Treble P, Shelley JMG, Chappell J (2003) Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet Sci Lett 216:141–153. doi:10.​1016/​S0012-821X(03)00504-1 CrossRef
    Treble P, Chappell J, Gagan M et al (2005) In situ measurement of seasonal δ18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth Planet Sci Lett 233:17–32. doi:10.​1016/​j.​epsl.​2005.​02.​013 CrossRef
    Treble PC, Bradley C, Wood A et al (2013) An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records. Quat Sci Rev 64:90–103. doi:10.​1016/​j.​quascirev.​2012.​12.​015 CrossRef
    Trouet V, Esper J, Graham NE et al (2009) Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science 324:78–80. doi:10.​1126/​science.​1166349 CrossRef
    Uribe C, Inclán R, Sánchez DM et al (2013) Effect of wildfires on soil respiration in three typical Mediterranean forest ecosystems in Madrid, Spain. Plant Soil 369:403–420. doi:10.​1007/​s11104-012-1576-x CrossRef
    Vargas R, Allen MF (2008) Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. New Phytol 179:460–471CrossRef
    Voncina A, Ferlan M, Eler K et al (2014) Effects of fire on carbon fluxes of a calcareous grassland. Int J Wildl Fire 23:425–434CrossRef
    Wang W, Zeng W, Chen W et al (2013) Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china. PLoS ONE 8:e71986. doi:10.​1371/​journal.​pone.​0071986 CrossRef
    Worboys G (1982) Koscuisko National Park Geology and Geomorphology. National Parks and Wildlife Services, Sydney
    Xia Q, Zhao J, Collerson KD (2001) Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave. Earth Planet Sci Lett 194:177–187CrossRef
    Zedler PH (2007) Fire effects on grasslands. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology: the process and the response. Academic Press Inc, Amsterdam, pp 397–439CrossRef
  • 作者单位:Katie Coleborn (1)
    Andy Spate (2)
    Mark Tozer (3)
    Martin S. Andersen (1)
    Ian J. Fairchild (4)
    Berin MacKenzie (3)
    Pauline C. Treble (5)
    Sophia Meehan (6)
    Andrew Baker (6)
    Andy Baker (1)

    1. Connected Waters Initiative Research Centre, University of New South Wales, Kensington, NSW, 2052, Australia
    2. Optimal Karst Management, PO Box 5099, Sandy Bay, Tasmania, 7005, Australia
    3. Office of Environment and Heritage, PO Box 1967, Hurstville, NSW, 1481, Australia
    4. GEES, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
    5. Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
    6. National Parks and Wildlife Services, Bathurst, NSW, 2795, Australia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Wildfires reduce soil CO2 concentration by destroying vegetation and soil-dwelling microbes, thus reducing soil respiration. Post-fire vegetation recovery is primarily determined by vegetation growth forms and modes of regeneration, whereas long-term recovery of soil microbes is largely dependent on vegetation rehabilitation. With previous research focussing on post-fire respiration recovery in the context of CO2 flux between the soil and atmosphere, there is a lack of studies measuring the long-term response of soil CO2 concentration in karst environments. Hence, this study aimed to quantify whether soil CO2 concentration was reduced 5 and 10 years after fires in a karst environment and to consider the implications for karst dissolution processes and speleothem growth rate. Paired sites with burnt and unburnt soil were compared with regards to soil CO2 concentration, soil temperature and soil moisture. Samples were taken from a grassland community and woodland community burnt 5 years prior and a forest community burnt 10 years prior. The results showed that soil respiration was depressed in the burnt site relative to the unburnt control in the woodland 5 years post-fire. A vegetation survey indicated that there substantially less biomass in the burnt site relative to the unburnt site. In the forest site 10 years post-fire there was no significant difference in soil CO2 concentration or vegetation between the burnt and control. This demonstrates that soil CO2 concentration takes >5 years to recover to pre-fire levels in woodlands and <10 years in subalpine forests and is determined by vegetation recovery. This long-term reduction in soil CO2 concentration caused by fire has the potential to affect karst subsurface processes governed by soil CO2 which lead to incorrect interpretation of speleothem proxy climate records. Keywords Speleothem Fire Carbon dioxide Soil CO2 concentration Paleoclimate reconstruction Karst

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700