Network topology-based detection of differential gene regulation and regulatory switches in cell metabolism and signaling
详细信息    查看全文
  • 作者:Rosario M Piro (1) (2) (6)
    Stefan Wiesberg (3)
    Gunnar Schramm (1) (2)
    Nico Rebel (3)
    Marcus Oswald (1) (4) (5)
    Roland Eils (1) (2)
    Gerhard Reinelt (3)
    Rainer K枚nig (1) (4) (5)

    1. Division of Theoretical Bioinformatics
    ; German Cancer Research Center (Deutsches Krebsforschungszentrum ; DKFZ) ; Heidelberg ; Germany
    2. Department of Bioinformatics and Functional Genomics
    ; Institute of Pharmacy and Molecular Biotechnology ; BioQuant ; University of Heidelberg ; Heidelberg ; Germany
    6. German Consortium for Translational Cancer Research (DKTK) and Division of Molecular Genetics
    ; German Cancer Research Center (Deutsches Krebsforschungszentrum ; DKFZ) ; Heidelberg ; Germany
    3. Institute of Computer Science and Interdisciplinary Center for Scientific Computing
    ; University of Heidelberg ; Heidelberg ; Germany
    4. Center for Sepsis Control and Care
    ; University Hospital Jena ; Jena ; Germany
    5. Hans-Kn枚ll-Institute (HKI)
    ; Jena ; Germany
  • 关键词:Pathway analysis ; Network topology ; Pathway networks ; Gene expression
  • 刊名:BMC Systems Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:8
  • 期:1
  • 全文大小:373 KB
  • 参考文献:1. Schramm, G, Wiesberg, S, Diessl, N, Kranz, AL, Sagulenko, V, Oswald, M, Reinelt, G, Westermann, F, Eils, R, K枚nig, R (2010) PathWave: discovering patterns of differentially regulated enzymes in metabolic pathways. Bioinformatics 26: pp. 1225-1231 CrossRef
    2. Kanehisa, M, Goto, S, Sato, Y, Furumichi, M, Tanabe, M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: pp. D109-D114 CrossRef
    3. Schramm, G, Surmann, EM, Wiesberg, S, Oswald, M, Reinelt, G, Eils, R, K枚nig, R (2010) Analyzing the regulation of metabolic pathways in human breast cancer. BMC Med Genomics 3: pp. 39 CrossRef
    4. Lewis, NE, Schramm, G, Bordbar, A, Schellenberger, J, Andersen, MP, Cheng, JK, Patel, N, Yee, A, Lewis, RA, Eils, R, K枚nig, R, Palsson, B脴 (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28: pp. 1279-1285 CrossRef
    5. T枚njes, M, Barbus, S, Park, YJ, Wang, W, Schlotter, M, Lindroth, AM, Pleier, SV, Bai, AH, Karra, D, Felsberg, J, Addington, A, Lemke, D, Hovestadt, V, Piro, RM, K枚nig, R, Rolli, CG, Sturm, D, Witt, H, Kemkemer, R, Schmidt, K, Hull, WE, Pfister, SM, Hutson, SM, Plass, C, Okun, JG, Reifenberger, G, Lichter, P, Radlwimmer, B (2013) BCAT1 promotes cell proliferation via amino acid catabolism in IDH1 wildtype gliomas. Nat Medicine 19: pp. 901-908 CrossRef
    6. Lewis, NE, Hixson, KK, Conrad, TM, Lerman, JA, Charusanti, P, Polpitiya, AD, Adkins, JN, Schramm, G, Purvine, SO, Lopez-Ferrer, D, Weitz, KK, Eils, R, K枚nig, R, Smith, RD, Palsson, B脴 (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6: pp. 390 CrossRef
    7. Duarte, NC, Becker, SA, Jamshidi, N, Thiele, I, Mo, ML, Vo, TD, Srivas, R, Palsson, B脴 (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104: pp. 1777-1782 CrossRef
    8. Schellenberger, J, Park, JO, Conrad, TM, Palsson, B脴 (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11: pp. 213 CrossRef
    9. Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, Paulovich, A, Pomeroy, SL, Golub, TR, Lander, ES, Mesirov, JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: pp. 15545-15550 CrossRef
    10. Huang, DW, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 4: pp. 44-57 CrossRef
    11. Mallat, S (1998) A Wavelet Tour of Signal Processing. Academic Press, New York
    12. Oswald, M, Reinelt, G, Wiesberg, S (2012) Exact solution of the 2-dimensional grid arrangement problem. Discrete Optimization 9: pp. 189-199 CrossRef
    13. Jemal, A, Bray, F, Center, MM, Ferlay, J, Ward, E, Forman, D (2011) Global cancer statistics. CA Cancer J Clin 61: pp. 69-90 CrossRef
    14. Seo, JS, Ju, YS, Lee, WC, Shin, JY, Lee, JK, Bleazard, T, Lee, J, Jung, YJ, Kim, JO, Shin, JY, Yu, SB, Kim, J, Lee, ER, Kang, CH, Park, IK, Rhee, H, Lee, SH, Kim, JI, Kang, JH, Kim, YT (2012) The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 22: pp. 2109-2119 CrossRef
    15. Jang, M, Kim, SS, Lee, J (2013) Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45: pp. e45 CrossRef
    16. Warburg, O, Wind, F, Negelein, E (1927) The metabolism of tumors in the body. J Gen Physiol 8: pp. 519-530 CrossRef
    17. Suzuki, Y, Suda, T, Furuhashi, K, Suzuki, M, Fujie, M, Hahimoto, D, Nakamura, Y, Inui, N, Nakamura, H, Chida, K (2010) Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer 67: pp. 361-365 CrossRef
    18. Creelan, BC, Antonia, S, Bepler, G, Garrett, TJ, Simon, GR, Soliman, HH (2013) Indoleamine 2,3-dioxygenase activity and clinical outcome following induction chemotherapy and concurrent chemoradiation in Stage III non-small cell lung cancer. Oncoimmunology 2: pp. e23428 CrossRef
    19. Opitz, CA, Litzenburger, UM, Sahm, F, Ott, M, Tritschler, I, Trump, S, Schumacher, T, Jestaedt, L, Schrenk, D, Weller, M, Jugold, M, Guillemin, GJ, Miller, CL, Lutz, C, Radlwimmer, B, Lehmann, I, Von Deimling, A, Wick, W, Platten, M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478: pp. 197-120 CrossRef
    20. Gamage, DG, Hendrickson, TL (2013) GPI transamidase and GPI anchored proteins: oncogenes and biomarkers for cancer. Crit Rev Biochem Mol Biol 48: pp. 446-464 CrossRef
    21. Doroszuk, A, Jonker, MJ, Pul, N, Breit, TM, Zwaan, BJ (2012) Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension. BMC Genomics 13: pp. 167 CrossRef
    22. Batal, AB, Parsons, CM (2002) Effects of age on nutrient digestibility in chicks fed different diets. Poult Sci 81: pp. 400-407 CrossRef
    23. Batal, AB, Parsons, CM (2004) Utilization of various carbohydrate sources as affected by age in the chick. Poult Sci 83: pp. 1140-1147 CrossRef
    24. Froy, O (2011) Circadian rhythms, aging, and life span in mammals. Physiology 26: pp. 225-235 CrossRef
    25. Dubrovsky, YV, Samsa, WE, Kondratov, RV (2010) Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging 2: pp. 936-944
    26. Mortazavi, A, Williams, BA, McCue, K, Schaeffer, L, Wold, B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: pp. 621-628 CrossRef
    27. Sayers, EW, Barrett, T, Benson, DA, Bolton, E, Bryant, SH, Canese, K, Chetvernin, V, Church, DM, Dicuccio, M, Federhen, S, Feolo, M, Fingerman, IM, Geer, LY, Helmberg, W, Kapustin, Y, Krasnov, S, Landsman, D, Lipman, DJ, Lu, Z, Madden, TL, Madej, T, Maglott, DR, Marchler-Bauer, A, Miller, V, Karsch-Mizrachi, I, Ostell, J, Panchenko, A, Phan, L, Pruitt, KD, Schuler, GD (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40: pp. D13-D25 CrossRef
    28. Sharma, AK, K枚nig, R (2013) Metabolic network modeling approaches for investigating the "hungry cancer". Semin Cancer Biol 23: pp. 227-234 cancer.2013.05.001" target="_blank" title="It opens in new window">CrossRef
  • 刊物主题:Bioinformatics; Systems Biology; Simulation and Modeling; Computational Biology/Bioinformatics; Physiological, Cellular and Medical Topics; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1752-0509
文摘
Background Common approaches to pathway analysis treat pathways merely as lists of genes disregarding their topological structures, that is, ignoring the genes' interactions on which a pathway's cellular function depends. In contrast, PathWave has been developed for the analysis of high-throughput gene expression data that explicitly takes the topology of networks into account to identify both global dysregulation of and localized (switch-like) regulatory shifts within metabolic and signaling pathways. For this purpose, it applies adjusted wavelet transforms on optimized 2D grid representations of curated pathway maps. Results Here, we present the new version of PathWave with several substantial improvements including a new method for optimally mapping pathway networks unto compact 2D lattice grids, a more flexible and user-friendly interface, and pre-arranged 2D grid representations. These pathway representations are assembled for several species now comprising H. sapiens, M. musculus, D. melanogaster, D. rerio, C. elegans, and E. coli. We show that PathWave is more sensitive than common approaches and apply it to RNA-seq expression data, identifying crucial metabolic pathways in lung adenocarcinoma, as well as microarray expression data, identifying pathways involved in longevity of Drosophila. Conclusions PathWave is a generic method for pathway analysis complementing established tools like GSEA, and the update comprises efficient new features. In contrast to the tested commonly applied approaches which do not take network topology into account, PathWave enables identifying pathways that are either known be involved in or very likely associated with such diverse conditions as human lung cancer or aging of D. melanogaster. The PathWave R package is freely available at http://www.ichip.de/software/pathwave.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700