Optimization Approaches for Designing Quantum Reversible Arithmetic Logic Unit
详细信息    查看全文
  • 作者:Majid Haghparast ; Ali Bolhassani
  • 关键词:Reversible logic ; Quantum computation ; Quantum gates ; Quantum cost ; Reversible ALU ; Low power design ; Quantum computer
  • 刊名:International Journal of Theoretical Physics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:55
  • 期:3
  • 页码:1423-1437
  • 全文大小:737 KB
  • 参考文献:1.Morrison, M.A.: Design of a Reversible ALU Based on Novel Reversible Logic Structures. PhD diss, Graduate School Theses and Dissertations, University of South Florida (2012)
    2.Morrison, M., Ranganathan, N.: A novel optimization method for reversible logic circuit minimization. In: VLSI (ISVLSI), 2013 IEEE Computer Society Annual Symposium on, pp. 182–187. IEEE (2013)
    3.Grobe, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits for reversible functions with don’t cares. In: Multiple Valued Logic, 2008. ISMVL 2008. 38th International Symposium on, pp. 214–219. IEEE (2008)
    4.Joonho, L.I.M., Dong-Gyu, K., Soo-Ik, C.H.A.E.: Reversible energy recovery logic circuits and its 8-phase clocked power generator for ultra-low-power applications. IEICE Trans. Electron. 82(4), 646–653 (1999)
    5.Morrison, M., Ranganathan, N.: Design of a reversible ALU based on novel programmable reversible logic gate structures. In: VLSI (ISVLSI), 2011 IEEE Computer Society Annual Symposium on, pp. 126–131. IEEE (2011)
    6.Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. J. Phys. A: Math. Theor. 43(38), 382002 (2010)CrossRef
    7.Weste, N.H.E., Harris, D.: CMOS VLSI Design, A Circuits and Systems Perspective. Published by Person Education, 3 ed., Boston: Addison Wesley, 715–738 (2005)
    8.Moore, G.E: Cramming more components onto integrated circuits (1965)
    9.Toffoli, T.: Reversible computing. Springer, Berlin Heidelberg (1980)CrossRef
    10.Nielsen, M.A., Chuang, I.L., James, D.F.V.: Quantum computation and quantum information. Phys. Today 54, 60–2 (2001)
    11.Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)MathSciNet CrossRef
    12.Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)CrossRef
    13.Dirac, P.A.M.: The principles of quantum mechanics. Oxford, 1958, Chap. 5; for a modern treatment, see A. Peres, Quantum Theory: Concepts and Methods, (Kluwer, 1993), Chap. 8.6 (1930)
    14.Kaye, P., Laflamme, R., Mosca, M.: An introduction to quantum computing. Oxford University Press Book-LinG, published in the United States by Oxford University Press Inc., Oxford, New York, ISBN 0-19-857000-7, pp 799–800 (2007)
    15.Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)CrossRef
    16.Wille, R., Drechsler, R.: Towards a design flow for reversible logic. Springer Dordrecht, Heidelberg (2010)CrossRef
    17.Hung, W.N.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Quantum logic synthesis by symbolic reachability analysis. In: Proceedings of the 41st annual Design Automation Conference, pp. 838–841. ACM (2004)
    18.Feynman, Richard P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)ADS MathSciNet CrossRef
    19.Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Sci. 425(1868), 73–90 (1989)ADS MathSciNet CrossRef
    20.Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266–3276 (1985)ADS MathSciNet CrossRef
    21.Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)ADS CrossRef
    22.Safari, P., Haghparast, M., Azari, A., Branch, A.: A Design of Fault Tolerant Reversible Arithmetic Logic Unit. Life Science Journal 3, 9 (2012)
    23.Dixit, A., Kapse, V.: Arithmetic & Logic Unit (ALU) Design using Reversible Control Unit. Int. J. Eng. Innov. Technol. (IJEIT), ISSN:2277-3754 1(6), 55–60 (2012)
    24.Syamala, Y., Tilak, A.V.N.: Reversible arithmetic logic unit. In: Electronics Computer Technology (ICECT), 2011 3rd International Conference on, vol. 5, pp. 207-211. IEEE (2011)
    25.Morrison, M., Lewandowski, M., Meana, R., Ranganathan, N.: Design of a novel reversible ALU using an enhanced carry look-ahead adder. In: Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on, pp. 1436–1440. IEEE (2011)
    26.Guan, Z., Li, W., Ding, W., Hang, Y., Ni, L.: An arithmetic logic unit design based on reversible logic gates. In: Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on, pp. 925–931. IEEE (2011)
    27.Mamatag, S., Das, B., Rahaman, A.: An Optimized Realization of ALU for 12-Operations by using a Control Unit of reversible gates. Int. J. Adv. Res. Comput. Sci. Softw. Eng., ISSN: 2277 128X A. 4(1), 496–502 (2014)
    28.Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)ADS MathSciNet CrossRef
    29.Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53(4), 2855–6 (1996)ADS MathSciNet CrossRef
    30.Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(4), 14 (2010)
    31.Qi, X., Chen, F., Guo, L., Luo, Y., Hu, M.: Efficient Approaches for Designing Fault Tolerant Reversible BCD Adders ? J. Comput. Inf. Syst. 9(14), 5869–5877 (2013)
    32.Mohammadi, M., Haghparast, M., Eshghi, M., Navi, K.: Minimization and optimization of reversible BCD-Full adder/subtractor using genetic algorithm and Don’t Care concept. Int. J. Quantum Inf. 05, 969–989 (2009)CrossRef
    33.Haghparast, M., Navi, K.: Novel reversible fault tolerant error coding and detection circuits. Int. J. Quantum Inf. 9(02), 723–738 (2011)CrossRef
    34.Haghparast, M., Mohammadi, M., Navi, K., Eshghi, M.: Optimized reversible multiplier circuit. J. Circuits Systems Computers 18(02), 311–323 (2009)CrossRef
    35.Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible circuits. In: Proceedings of the 47th Design Automation Conference (DAC), 47th ACM/IEEE, pp. 647–652. ACM (2010)
    36.Haghparast, M., Jassbi, S.J., Navi, K., Hashemipour, O.: Design of a novel reversible multiplier circuit using HNG gate in nanotechnology. In: World Appl. Sci. J. (2008)
    37.Babazadeh, S., Haghparast, M.: Design of a nanometric fault tolerant reversible multiplier circuit. J. Basic Appl. Sci. Res. 2(2), 1355–1361 (2012)
    38.Haghparast, M., Navi, K.: A novel fault tolerant reversible gate for nanotechnology based systems. Am. J. Appl. Sci. 5(5), 519–523 (2008)CrossRef
    39.Parhami, B.: Fault-tolerant reversible circuits. In: Signals, Systems and Computers, Pacific Grove, CA 2006, 2006. ACSSC’06. Fortieth Asilomar Conference on, pp. 1726–1729. IEEE (2006)
    40.Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8(2), 208–213 (2009)CrossRef
    41.Islam, M., Rahman, M.M., Hafiz, M.: Efficient approaches for designing fault tolerant reversible carry look-ahead and carry-skip adders (2010). arXiv:1008.​3344
    42.Haghparast, M., Navi, K.: Design of a novel fault tolerant reversible Full Adder for Nanotechnology Based Systems. Am. J. Appl. Sci. 3(1), 114–118 (2008)
    43.Haghparast, M., Navi, K.: A novel reversible BCD adder for nanotechnology based systems. Am. J. Appl. Sci. 5(3), 282–288 (2008)CrossRef
    44.Shams, M., Haghparast, M., Navi, K.: Novel reversible multiplier circuit in nanotechnology. World Appl. Sci. J. 3(5), 806–810 (2008)
    45.Haghparast, M., Shams, M.: Optimized Nanometric Fault Tolerant Reversible BCD Adder. Res. J. Appl. Sci. Eng. Technol. 4(9), 1067–1072 (2012)
    46.Haghparast, M.: Design and implementation of nanometric fault tolerant reversible BCD adder. Aust. J. Basic Appl. Sci. 5(10), 896–901 (2011)
    47.Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(11), 1497–1509 (2004)CrossRef
    48.Khan, M.H.A., Perkowski, M.A., Khan, M.R.: Ternary Galois field expansions for reversible logic and Kronecker decision diagrams for ternary GFSOP minimization (Galois field sum of products). In: Multiple-Valued Logic, 2004. Proceedings. 34th International Symposium on, pp. 58–67. IEEE (2004)
    49.Fredkin, E., Toffoli, T.: Conservative logic. Springer, London (2002)CrossRef
    50.Zhou, R., Li, Y., Zhang, M., Hu, B.: Novel design for reversible arithmetic logic unit. Int. J. Theor. Phys., 1–15 (2014)
    51.Pradeep, Singla, Satyan: Article: Towards the Solution of Power Dissipation in Electronics Systems through Thermodynamics, Proceedings of ETEIC-2012: April-2012, pp 300–303
  • 作者单位:Majid Haghparast (1)
    Ali Bolhassani (2)

    1. Department of Computer Engineering, Yadegar -e- Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran
    2. Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Quantum Physics
    Elementary Particles and Quantum Field Theory
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9575
文摘
Reversible logic is emerging as a promising alternative for applications in low-power design and quantum computation in recent years due to its ability to reduce power dissipation, which is an important research area in low power VLSI and ULSI designs. Many important contributions have been made in the literatures towards the reversible implementations of arithmetic and logical structures; however, there have not been many efforts directed towards efficient approaches for designing reversible Arithmetic Logic Unit (ALU). In this study, three efficient approaches are presented and their implementations in the design of reversible ALUs are demonstrated. Three new designs of reversible one-digit arithmetic logic unit for quantum arithmetic has been presented in this article. This paper provides explicit construction of reversible ALU effecting basic arithmetic operations with respect to the minimization of cost metrics. The architectures of the designs have been proposed in which each block is realized using elementary quantum logic gates. Then, reversible implementations of the proposed designs are analyzed and evaluated. The results demonstrate that the proposed designs are cost-effective compared with the existing counterparts. All the scales are in the NANO-metric area. Keywords Reversible logic Quantum computation Quantum gates Quantum cost Reversible ALU Low power design Quantum computer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700