Electrochemical performance of aluminum niobium oxide as anode for lithium-ion batteries
详细信息    查看全文
  • 作者:Qi Wang ; Fu-Chi Wang ; Xing-Wang Cheng
  • 关键词:Aluminum niobium oxide ; Electrochemical performance ; Anode ; Lithium ; ion batteries
  • 刊名:Rare Metals
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:35
  • 期:3
  • 页码:256-261
  • 全文大小:1,259 KB
  • 参考文献:[1]Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.CrossRef
    [2]Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef
    [3]Li JL, Cao CB, Xu XY, Zhu YQ, Yao RM. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries. J Mater Chem A. 2013;1(38):11848.CrossRef
    [4]Wang L, Nie ZY, Cao CB, Zhu YQ, Khalid S. Chrysanthemum-like TiO2 nanostructures with exceptional reversible capacity and high coulombic efficiency for lithium storage. J Mater Chem A. 2015;3(12):6402.CrossRef
    [5]Li JL, Zhu YQ, Wang L, Cao CB. Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability. ACS Appl Mater Interfaces. 2014;6(21):18742.CrossRef
    [6]Viet AL, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C. 2009;114(1):664.CrossRef
    [7]Wang X-J, Krumeich F, Wçrle M, Nesper R, Jantsky L, Fjellvåg H. Niobium(V) oxynitride: synthesis, characterization, and feasibility as anode material for rechargeable lithium-ion batteries. Chem Eur J. 2012;18(19):5970.CrossRef
    [8]Wang LP, Yu LH, Satish R, Zhu JX, Yan QY, Srinivasan M, Xu ZC. High-performance hybrid electrochemical capacitor with binder-free Nb2O5@graphene. RSC Adv. 2014;4(70):37389.CrossRef
    [9]Arunkumar P, Ashish AG, Babu B, Sarang S, Suresh A, Sharma CH, Thalakulam M, Shaijumon MM. Nb2O5/graphene nanocomposites for electrochemical energy storage. RSC Adv. 2015;5(74):59997.CrossRef
    [10]Lim E, Kim H, Jo C, Chun J, Ku K, Kim S, Lee HI, Nam I-S, Yoon S, Kang K, Lee J. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano. 2014;8(9):8968.CrossRef
    [11]Han JT, Liu DQ, Song SH, Kim Y, Goodenough JB. Lithium ion intercalation performance of niobium oxides: KNb5O13 and K6Nb10.8O30. Chem Mater Chem Mater. 2009;21(20):4753.CrossRef
    [12]Pinus I, Catti M, Ruffo R, Salamone MM, Mari CM. Neutron diffraction and electrochemical study of FeNb11O29/Li11FeNb11O29 for lithium battery anode applications. Chem Mater. 2014;26(6):2203.CrossRef
    [13]Jo C, Kim Y, Hwang J, Shim J, Chun J, Lee J. Block copolymer directed ordered mesostructured TiNb2O7 multimtallic oxide constructed of nanocrystals as high power Li-ion battery anodes. Chem Mater. 2014;26(11):3508.CrossRef
    [14]Li HS, Shen LF, Pang G, Fang S, Luo HF, Yang K, Zhang XG. TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries. Nanoscale. 2015;7(2):619.CrossRef
    [15]Lu X, Jian Z, Fang Z, Gu L, Hu Y-S, Chen W, Wang Z, Chen L. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ Sci. 2011;4(8):2638.CrossRef
    [16]Wu X, Miao J, Han W, Hu YS, Chen D, Lee JS, Kim J, Chen L. Investigation on Ti2Nb10O29 anode material for lithium-ion batteries. Electrochem Commun. 2012;25:39.CrossRef
    [17]Cheng Q, Liang J, Zhu Y, Si L, Guo C, Qian Y. Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes. J Mater Chem A. 2014;2(41):17258.CrossRef
    [18]Pralong V, Reddy MA, Caignaert V, Malo S, Lebedev OI, Varadaraju UV, Raveau B. A new form of LiNbO3 with a lamellar structure showing reversible lithium intercalation. Chem Mater. 2011;23(7):1915.CrossRef
    [19]Gao X, Fisher CAJ, Ikuhara YH, Fujiwara Y, Kobayashi S, Moriwake H, Kuwabara A, Hoshikawa K, Kohama K, Iba H, Ikuhara Y. Cation ordering in a-site-deficient Li-ion conducting perovskites La(1−x)/3Li x NbO3. J Mater Chem A. 2015;3(7):3351.CrossRef
    [20]Jian Z, Lu X, Fang Z, Hu Y-S, Zhou J, Chen W, Chen L. LiNb3O8 as a novel anode material for lithium-ion batteries. Electrochem Commun. 2011;13(10):1127.CrossRef
    [21]Reddy MA, Varadaraju UV. Lithium insertion into niobates with columbite-type structure: interplay between structure-composition and crystallite size. J Phys Chem C. 2011;115(50):25121.CrossRef
    [22]Samarasingha PB, Thomas CI, Fjellvåg H. Investigation of Li+ insertion in columbite structured FeNb2O6 and rutile structured CrNb2O6 materials. Electrochim Acta. 2015;153(1):232.CrossRef
    [23]Reddy MA, Varadaraju UV. Facile insertion of lithium into nanocrystalline AlNbO4 at room temperature. Chem Mater. 2008;20(14):4557.CrossRef
    [24]Zachu-Christiansen B, West K, Jacobsen T, Skaarup S. Lithium insertion in isomorphous MO2(B) structures. Solid State Ionics. 1992;53(1):364.CrossRef
    [25]Fu ZW, Jiang TF, Zhang LJ, Liu BK, Wang DJ, Wang LL, Xie TF. Surface treatment with Al3+ on a Ti-doped α-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting. J Mater Chem A. 2014;2(33):13705.CrossRef
    [26]Sharma N, Shaju KM, Rao GV, Chowdari BVR, Dong ZL, White TJ. Carbon-coated nanophase CaMoO4 as anode material for Li ion batteries. Chem Mater. 2004;16(3):504.CrossRef
    [27]Li JL, Yao RM, Bai J, Cao CB. Two-dimensional mesoporous carbon nanosheets as a high-performance anode material for lithium-ion batteries. ChemPlusChem. 2013;78(8):797.CrossRef
    [28]Lu ZG, Tan XX, Tang YG, Zhou KC. LiNi0.7Co0.15Mn0.15O2 microspheres as high-performance cathode materials for lithium-ion batteries. Rare Met. 2014;33(5):608.CrossRef
  • 作者单位:Qi Wang (1)
    Fu-Chi Wang (1)
    Xing-Wang Cheng (1)

    1. School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
文摘
AlNbO4, as lithium-ion batteries (LIBs) anode, has a high theoretical capacity of 291.5 mAh·g−1. Here, AlNbO4 anode materials were synthesized through a simple solid-state method. The structure, morphology and electrochemical performances of AlNbO4 anode were systematically investigated. The results show that AlNbO4 is monoclinic with C2/m space group. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations reveal the AlNbO4 particles with the size of 100 nm–2 μm. As a lithium-ion batteries anode, AlNbO4 delivers a high reversible capacity and good rate capability. The discharge capacity is as high as 151.0 mAh·g−1 after 50 charge and discharge cycles at 0.1C corresponding to capacity retention of 90.7 %. When the current density increases to 5.0C, AlNbO4 anode displays reversible discharge capacity of 73.6 mAh·g−1 at the 50th cycle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700