Assessing the condition of the Missouri, Ohio, and Upper Mississippi rivers (USA) using diatom-based indicators
详细信息    查看全文
  • 作者:Amy R. Kireta (1) akireta@d.umn.edu
    Euan D. Reavie (1)
    Gerald V. Sgro (2)
    Ted R. Angradi (3)
    David W. Bolgrien (3)
    Terri M. Jicha (3)
    Brian H. Hill (3)
  • 关键词:Diatoms &#8211 ; Great rivers &#8211 ; Monitoring &#8211 ; Transfer functions
  • 刊名:Hydrobiologia
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:691
  • 期:1
  • 页码:171-188
  • 全文大小:632.8 KB
  • 参考文献:1. Angradi, T. R. (ed.), 2006. Environmental monitoring and assessment program: great river ecosystems field operations manual. EPA/620/R-06/002. US Environmental Protection Agency, Office of Research and Development, Washington, DC: 217 pp [available on internet at www.epa.gov/emap/greatriver/]. Accessed 7 May 2011.
    2. Angradi, T. R., D. W. Bolgrien, T. M. Jicha, M. S. Pearson, B. H. Hill, D. L. Taylor, E. W. Schweiger, L. Shepard, A. R. Batterman, M. F. Moffett, C. M. Elonen & L. E. Anderson, 2008. A bioassessment approach for midcontinent great rivers: the Upper Mississippi, Missouri, and Ohio (USA). Environmental Monitoring Assessment 152: 425–442.
    3. Angradi, T. R., D. W. Bolgrien, T. M. Jicha, M. S. Pearson, D. L. Taylor & B. H. Hill, 2009a. Multispatial-scale variation in benthic and snag-surface macroinvertebrate assemblages in mid-continent USA great rivers. Journal of the North American Benthological Society 28: 122–141.
    4. Angradi, T. R., M. S. Pearson, T. M. Jicha, D. L. Taylor, D. W. Bolgrien, M. F. Moffett, K. A. Blocksom & B. H. Hill, 2009b. Using stressor gradients to determine reference expectations for great river fish assemblages. Ecological Indicators 9: 748–764.
    5. Bate, N. & P. Newall, 2002. Techniques for the use of diatoms in water quality assessment: how many valves? In Proceedings of the 15th International Diatom Symposium, Perth, Australia, 28 September–2 October 1998: 153–160.
    6. Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthesizing U.S. river restoration efforts. Science 308: 636–637.
    7. Biggs, B. J. F., 1996. Pattern of benthic algae of streams. In Stevenson, J. R., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 31–56.
    8. Birks, H. J. B., 1995. Quantitative paleoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data, Tech Guide 5. Quaternary Research Association, Cambridge: 161–254.
    9. Birks, H. J. B., 1998. Numerical tools in paleolimnology—progress, potentialities and problems. Journal of Paleolimnology 20: 307–332.
    10. Birks, H. J. B., 2010. Numerical methods for the analysis of diatom assemblage data. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, New York: 23–54.
    11. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London B 327: 263–278.
    12. Bradshaw, E. G., N. J. Anderson, J. P. Jensen & E. Jeppesen, 2002. Phosphorus dynamics in Danish lakes and the implications for diatom ecology and palaeoecology. Freshwater Biology 47: 1963–1975.
    13. Camburn, K. E. & D. F. Charles, 2000. Diatoms of low-alkalinity lakes in the northeastern United States. In E. E. Spamer (ed.), Special publications 18. The Academy of Natural Sciences of Philadelphia, Philadelphia: 152 pp.
    14. Camburn, K. E., J. C. Kingston & D. F. Charles, 1984–1986. PIRLA diatom iconograph. PIRLA Unpublished Report Series 3. Indiana University, Bloomington.
    15. Charles, D. F., F. W. Acker, D. D. Hart, C. W. Reimer & P. B. Cotter, 2006. Large-scale regional variation in diatom-water chemistry relationships: rivers of the eastern United States. Hydrobiologia 561: 27–57.
    16. Cumming, B. F., S. E. Wilson, R. I. Hall & J. P. Smol, 1995. Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients, and other limnological variables. Bibliotheca Diatomologica 31: 1–207.
    17. Dela-Cruz, J., T. Pritchard, G. Gorden & P. Ajani, 2006. The use of periphytic diatoms as a means of assessing impacts of point source inorganic nutrient pollution in south-eastern Australia. Freshwater Biology 51: 951–972.
    18. Delgado, C., I. Pardo & L. Garc铆a, 2010. A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain). Hydrobiologia 644: 371–384.
    19. Denys, L., 2004. Relation of abundance-weighted averages of diatom indicator values to measured environmental conditions in standing freshwaters. Ecological Indicators 4: 255–275.
    20. Detenbeck, N. E., D. L. Taylor, A. Lima & C. Hagley, 1996. Temporal and spatial variability in water quality of wetlands in the Minneapolis/St. Paul, MN metropolitan area: implications for monitoring strategies and designs. Environmental Monitoring Assessment 40: 11–40.
    21. Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the environmental monitoring and assessment program-surface waters (EMAP-SW). Environmental Monitoring and Assessment 31: 275–306.
    22. Graf, W. L., 2001. Damage control: restoring the physical integrity of America’s Rivers. Annals of the Association of American Geographers 91: 1–27.
    23. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 7: 417–434.
    24. Heiskary, S. & B. Wilson, 2008. Minnesota’s approach to lake nutrient criteria development. Lake and Reservoir Management 24: 282–297.
    25. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.
    26. Hill, B. H., A. T. Herlihy, P. R. Kaufmann, R. J. Stevenson, F. H. McCormick & C. B. Johnson, 2000. Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society 19: 50–67.
    27. Hintze, J., 1998. NCSS 97. NCSS, Kaysville, UT [available on internet at www.ncss.com]. Accessed 7 May 2011.
    28. Hodgkiss, I. J. & C. Y. Law, 1985. Relating diatom community structure and stream water quality using species diversity indices. Water Pollution Control 84: 134–139.
    29. Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.
    30. Johnson, B. L., T. J. Naimo & W. B. Richardson, 1995. Past present and future concepts in large river ecology: how rivers function and how human activities influence river processes. BioScience 45: 134–141.
    31. Juggins, S., 2003. C2 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualization. University of Newcastle, Newcastle upon Tyne.
    32. Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in river. Journal of Applied Phycology 7: 433–444.
    33. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. H眉rlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E.-A. Lindstr酶m, M. Leitao, P. Marvan, J. Padis谩k, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. van Dam & J. Vizinet, 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215–224.
    34. Kelly, M. G., S. Juggins, R. Gurthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst & M. Yallop, 2008a. Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology 53: 403–422.
    35. Kelly, M. G., L. King, R. I. Jones, P. A. Barker & B. J. Jamieson, 2008b. Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610: 125–129.
    36. Kireta, A. R., E. D. Reavie, N. P. Danz, R. P. Axler, G. V. Sgro, T. N. Brown & T. P. Hollenhorst, 2007. Coastal geomorphic and lake variability in the Laurentian Great Lakes: implications for a diatom-based monitoring tool. Journal of Great Lakes Research 33: 136–153.
    37. Kireta, A. R., E. D. Reavie, G. V. Sgro, T. R. Angradi, D. W. Bolgrien, T. M. Jicha & B. H. Hill, 2011. Planktonic and periphytic diatom as indicators of stress on great rivers of the United States: testing water quality and disturbance models. Ecological Indicators 13: 222–231.
    38. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Ettl, J., J. Gerloff, H. Hyenig & D. Mollenhauer (eds), Susswasserflora von Mitteleuropa. Fischer, Stuttgart: 1–4.
    39. Mann, D. G., S. M. McDonald, M. M. Bayer, S. J. M. Droop, V. A. Chepurnov, R. E. Loke, A. Ciobanu & J. M. H. du Buf, 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43: 459–482.
    40. McDonald, M., R. Blair, D. Bolgrien, B. Brown, J. Dlugosz, S. Hale, S. Hedtke, D. Heggem, L. Jackson, K. Jones, B. Levinson, R. Linthurst, J. Messer, A. Olsen, J. Paul, S. Paulsen, J. Stoddard, K. Summers & G. Veith, 2004. The US environmental protection agency’s environmental monitoring and assessment program. In Wiersma, G. B. (ed.), Environmental Monitoring. CRC Press, New York: 649–668.
    41. O’Brien, R. M., 2007. A caution regarding rules of thumb for variance inflation factors. Quality and Quantity 41: 673–690.
    42. Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2009. vegan: Community Ecology Package, R package version 1.15-4 [available online at http://CRAN.R-project.org/package=vegan]. Accessed 7 May 2011.
    43. Patrick, R., 1949. A proposed biological measure of stream condition based on a survey of the Conestoga basin, Lancaster County, Pennsylvania. Proceedings of the Academy of Natural Sciences Philadelphia 101: 288–341.
    44. Patrick, R. & C. W. Reimer, 1966a. The Diatoms of the United States Exclusive of Alaska and Hawaii, No. 13, Vol. 1. Monographs of Natural Sciences of Philadelphia, Sutter House, PA.
    45. Patrick, R. & C. W. Reimer, 1966b. The Diatoms of the United States Exclusive of Alaska and Hawaii, Vol. 2. Monographs of Natural Sciences of Philadelphia, Sutter House, PA.
    46. Ponader, K. C., D. F. Charles & T. J. Belton, 2007. Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators 7: 79–93.
    47. Ponader, K. C., D. F. Charles, T. J. Belton & D. M. Winter, 2008. Total phosphorus inference models and indices for coastal plan streams based on benthic diatom assemblages from artificial substrates. Hydrobiologia 610: 139–152.
    48. Potapova, M. G. & D. F. Charles, 2003. Distribution of benthic diatom in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.
    49. Potapova, M. G. & D. F. Charles, 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7: 48–70.
    50. Prygiel, J. & M. Coste, 1993. The assessment of water quality in the Artois-Picardie water basin (France) by the use of diatom indices. Hydrobiologia 269(270): 343–349.
    51. R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical computing, Vienna. ISBN 3-9000051-07-0 [available on internet at http://www.R-project.org]. Accessed 7 May 2011.
    52. Reavie, E. D. & J. P. Smol, 1998. Freshwater diatoms from the St. Lawrence River. Bibliotheca Diatomologica 43: 224–225.
    53. Reavie, E. D. & M. B. Edlund, 2010. Diatoms as indicators of environmental change in rivers, fluvial lakes and impoundments. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, New York: 86–97.
    54. Reavie, E. D., T. M. Jicha, T. R. Angradi & B. H. Hill, 2010. Algal assemblages for large river monitoring: comparison among biovolume, absolute, and relative abundance metrics. Ecological Indicators 10: 167–177.
    55. Reichardt, E., 1999. Zur revision der gattung Gomphonema. Die arten um G. affine/insigne, G. angustatum/micropus, G. acuminatum, sowie gomphonemoide diatomeed aus dem Oberoligoz盲n in B枚hem. In Lange-Bertalot, H. (ed.), Iconographia Diatomologica. Annotated Diatom Micrographs, Vol. 8. Taxonomy. Koeltz Scientific Books, K枚nigstein: 203 pp.
    56. Rott, E., 1991. Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. In Whitton, B. A., E. Rott & G. Friedrich (eds), Use of Algae for Monitoring Rivers. Institute of Botany, University of Innsbruck, Austria: 9–16.
    57. Rott, E., E. Pipp & P. Pfister, 2003. Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Algological Studies 110: 91–115.
    58. Round, F. E., 1991. Diatoms in river water-monitoring studies. Journal of Applied Phycology 3: 129–145.
    59. Schweiger, E. W., D. W. Bolgrien, T. R. Angradi & J. R. Kelly, 2004. Environmental monitoring and assessment of a great river ecosystem: the upper Missouri River pilot. Environmental Monitoring and Assessment 103: 5–20.
    60. Seegert, G., 2000. Considerations regarding development of index of biotic integrity metrics for large rivers. Environmental Science & Policy 3: S99–S106.
    61. Smith, R. A., R. B. Alexander & G. E. Schwarz, 2003. Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science and Technology 37: 3039–3047.
    62. Soininen, J. & P. Niemel盲, 2002. Inferring the phosphorus levels of rivers from benthic diatoms using weighted averaging. Archiv f眉r Hydrobiologie 154: 1–18.
    63. Stevenson, R. J., 1997. Scale dependent determinants and consequences of benthic algal heterogeneity. Journal of the North American Benthological Society 16: 248–262.
    64. Stevenson, R. J., Y. Pan, K. M. Manoylov, C. A. Parker, D. P. Larsen & A. T. Herlihy, 2008. Development of diatom indicators of ecological conditions for streams of the western US. Journal of the North American Benthological Society 27: 1000–1016.
    65. Stevenson, R. J., Y. Pan & H. van Dam, 2010. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications to the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge: 57–85.
    66. Stoermer, E. F., R. G. J. Kreis & N. A. Andresen, 1999. Checklist of diatoms from the Laurentian Great Lakes. Journal of Great Lakes Research 25: 515–566.
    67. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269(270): 485–502.
    68. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca: 500 pp.
    69. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.
    70. Watanabe, T., K. Asai & A. Houki, 1988. Numerical water quality monitoring of organic pollution using diatom assemblages. In Round, F. E. (ed.), Proceedings of the 9th Diatom Symposium. Biopress Ltd., Bristol: 123–141.
    71. Whitton, B. A. & M. G. Kelly, 1995. Use of algae and other plants for monitoring rivers. Australian Journal of Ecology 20: 45–56.
    72. Williams, L. G., 1964. Possible relationships between plankton diatom species numbers and water-quality estimates. Ecology 45: 809–823.
    73. Winter, J. G. & H. C. Duthie, 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19: 32–49.
  • 作者单位:1. Center for Water and the Environment, Natural Resources Research Institute, University of Minnesota Duluth, 1900 East Camp Street, Ely, MN 55731, USA2. Department of Biology, John Carroll University, 20700 North Park Boulevard, University Heights, OH 44118, USA3. Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN 55804, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Diatom-based indicators were developed to assess environmental conditions in the Missouri, Ohio, and Upper Mississippi rivers. Disturbance gradients, comprising the first two principal components derived from a suite of stressor variables, included a trophic gradient (Trophic) and a gradient reflecting agriculture and other development activities (Ag/Dev). Diatom-based indicators were developed by creating models using weighted average calibration and regression-based transfer functions to relate planktonic and periphytic diatom species assemblages to each disturbance gradient. The most predictive disturbance models combined phytoplankton and periphyton assemblages into a single bioindicator model (observed versus inferred: Trophic r\textboot2 = 0. 5 6 r_{\text{boot}}^{2} = 0. 5 6 ; Ag/Dev r\textboot2 = 0. 7 0 r_{\text{boot}}^{2} = 0. 7 0 ). The geographic applicability of bioindicators was assessed by limiting sample geographical range during model calibrations. Geographic scale was limited by creating bioindicators using samples from: (a) each river, and (b) combined Mississippi/Missouri samples excluding Ohio River sites which were chemically unique. Indicator performance decreased with geographically restrictive models, therefore river basin-wide models, developed across all three rivers, is recommended. The most effective diatom-based disturbance bioindicators for this great river ecosystem could be applied using phytoplankton, periphyton, or combined assemblages to infer both trophic and agriculture/development disturbances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700