Fluorine-containing benzothiazole as a novel trypanocidal agent: design, in silico study, synthesis and activity evaluation
详细信息    查看全文
  • 作者:Roberto I. Cuevas-Hernández ; José Correa-Basurto…
  • 关键词:Anti ; trypanosomal drug ; Docking simulation ; Fluorine ; containing benzothiazole ; T. cruzi ; Triosephosphate isomerase ; Trypanocidal activity ; Quantitative structure–activity relationship
  • 刊名:Medicinal Chemistry Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:25
  • 期:2
  • 页码:211-224
  • 全文大小:2,563 KB
  • 参考文献:Akaike H (1974) A new look at the statical model identification. IEEE Trans Autom Control 19:716–723CrossRef
    Alvarez G, Aguirre B, Varela J, Cabrera M, Merlino A, López GV, Lavaggi ML, Porcal W, Di Maio R, González M, Cerecetto H, Cabrera N, Pérez R, de Gómez-Puyou MT, Gómez-Puyou A (2010) Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity. Eur J Med Chem 45:5767–5772PubMed CrossRef
    Banner D, Bloomer A, Petsko G, Phillips D, Pogson C, Willson I, Conan P, Furth A, Milmar J, Offord R, Priddle J, Waley S (1975) Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature 19(255):609–614CrossRef
    Bhavanarushi S, Kanakaiah V, Bharath G, Gangagnirao A, Vatsala J (2014) Synthesis and antibacterial activity of 4,4′-(aryl or alkyl methylene)-bis(1H-pyrazol-5-ol) derivatives. Med Chem Res. doi:10.​1007/​s00044-013-0623-3
    Correa J et al (2014) QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites. Chem Biol Interact 209:1–13CrossRef
    Dassault Systèmes BIOVIA (2015) Discovery Studio Modeling Environment, Release 4.5. Dassault Systèmes, San Diego
    Díaz DL et al (2011) In vitro and in vivo trypanocidal activity of some benzimidazole derivatives against two strains of Trypanosoma cruzi. Acta Trop. doi:10.​1016/​j.​actatropica.​2011.​12.​009
    Espinoza LM, Trujillo JG (2004) Exploring the possible binding sites at the interface of triosephosphate isomerase dimer as a potential target for anti-trypanosomal drug design. Bioorg Med Chem Lett 14(12):3151–3154CrossRef
    Espinoza LM, Trujillo JG (2005) Structural considerations for the rational design of selective anti-trypanosomal agents: the role of the aromatic clusters at the interface of triosephosphate isomerase dimer. Biochem Biophys Res Commun 25 328(4): 922–928
    Espinoza LM, Trujillo JG (2006) Toward a rational design of selective multi-trypanosomatid inhibitors: a computational docking study. Bioorg Med Chem Lett 16(24):6288–6292CrossRef
    Espinoza LM, Wong C, Trujillo JG (2010) Tyr74 is essential for the formation, stability and function of Plasmodium falciparum triosephosphate isomerase dimer. Arch Biochem Biophys 494(1):46–57CrossRef
    Filler R, Saha R (2009) Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med Chem 1(5):777–791PubMed CrossRef
    Flores CA, Cuevas RI, Correa J, Beltrán HI, Padilla II, Farfán JN, Nogueda B, Trujillo JG (2013) Synthesis and theoretic calculations of benzoxazoles and docking studies of their interactions with triosephosphate isomerase. Med Chem Res 22:2768–2777CrossRef
    Frisch MJ et al (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh
    Garza G, Cabrera N, Saavedra E, Tuena de Gomez-Puyou M, Ostoa P et al (1998) Sulfhydryl reagent susceptibility in proteins with high sequence similarity—triosephosphate isomerase from Trypanosoma brucei, Trypanosoma cruzi and Leishmania mexicana. Eur J Biochem 253:684–691CrossRef
    Guha R, Jurs PC (2005) Determining the validity of QSAR model—a classification approach. J Chem Inf Model 45:65–73PubMed CrossRef
    Hansch C, Leo A, Taft RA (1991) Survey of hammett substtituent constants and resonance and field parameters. Chem Rev 91(2):165–195CrossRef
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38PubMed CrossRef
    Knowles JR (1991) Enzyme catalysis, not different, just better. Nature 350:121–124PubMed CrossRef
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26PubMed CrossRef
    Lolis E, Petsko GA (1990) Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycerate at 2.5-Å resolution implications for catalysis. Biochemistry 29:6619–6625PubMed CrossRef
    Maldonado E, Soriano M, Moreno A, Cabrera N, Garza G, De Gomez-Puyou T, Gomez A, Perez R (1998) Differences in the intersubunit contacts in triosephosphate isomerase from two closely related pathogenic trypanosomes. J Mol Biol 283:193–203PubMed CrossRef
    Marin JÁ, Cunha E, Maciel BC, Simoes MV (2007) Pathogenesis of chronic Chagas heart disease. Circulation 115:1109–1123CrossRef
    Molisnpiration Cheminformatics (2015). http://​www.​molinspiration.​com/​cgi-bin/​properties
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRef
    Olivares V, Rodríguez A, Becker I, Berzunza M, García J et al (2007) Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi. PLoS Negl Trop Dis 1(1):e01. doi:10.​1371/​journal.​pntd.​0000001
    Organización Panamericana de la Salud (2006) Estimación cuantitativa de la enfermedad de Chagas en las Américas (Documento OPS/HDM/CD/425.06.). Washington (DC), EUA. Washington (DC): OPS
    Osiris Property Explorer (2015). http://​www.​organic-chemistry.​org/​prog/​peo/​
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802PubMed PubMedCentral CrossRef
    Pursor S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330CrossRef
    Rassi A Jr, Rassi A, Marin JÁ (2010) Chagas disease. Lancet 375:1388–1402PubMed CrossRef
    Romo A, Téllez A, Yépez L, Hernández F, Hernández A, Castillo R (2011) The design and inhibitory profile of new benzimidazole derivatives against triosephosphate isomerase from Trypanosoma cruzi: a problem of residue motility. J Mol Graph Model 30:90–99CrossRef
    Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313CrossRef
    Roy PP, Paul S, Mitra I, Roy K (2009) On two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701PubMed CrossRef
    Saab G, Juárez R, Osuna J, Sánchez F, Soberón X (2011) Different strategies to recover the activity of monomeric triosephosphate isomerase by directed evolution. Protein Eng 14:149–155CrossRef
    Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Mod 17:57–61
    SPSS for windows (1999) Version 10.05. SPSS Inc, Bangalore, India
    Trujillo JG et al (2004) The E and Z isomers of 3-(benzoxazol-2-yl)prop-2-enoic acid. Acta Crystallogr C 60(Pt 10):o723–o726CrossRef
    Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623PubMed CrossRef
    Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA (2001) Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updates 4:1–14CrossRef
    Voss C et al (2014) α-Keto phenylamides as P1′-extended proteasome inhibitors. Chem Med Chem 9:2557–2564PubMed CrossRef
    Weekes AA et al (2011) An efficient synthetic route to biologically relevant 2-phenylbenzothiazoles substituted on the benzothiazole ring. Tetrahedron 67:7743–7747CrossRef
    World Health Organization (2015) Chagas disease (American trypanosomiasis). http://​www.​who.​int/​mediacentre/​factsheets/​fs340/​en/​index.​html . Accessed 13 Jan 2015
    Xu J, Wang L, Zhang H, Shen X, Liang G (2012) Quantitative structure property relationship studies on free-radical polymerization chain-transfer constants for styrene. J Appl Polym Sci 123:356–364CrossRef
    Zekri O et al (2009) Role of aromatic substituents on the antiproliferative effects of diphenyl ferrocenyl butene compounds. Dalton Trans 22:4318–4326PubMed CrossRef
    Zhang HJ et al (2013) Enzymatic synthesis of theanine with Escherichia coli γ-glutamyltranspeptidase from a series of γ-glutamyl anilide substrate analogues. Biotechnol Bioprocess Eng 18:358–364CrossRef
    Zomosa V, Hernández G, Reyes H, Martínez E, Garza G, Pérez R, Tuena De Gómez-Puyou M, Gómez A (2003) Control of the reactivation kinetics of homodimeric triosephosphate isomerase from unfolded monomer. Biochemistry 42:3311–3318CrossRef
  • 作者单位:Roberto I. Cuevas-Hernández (1)
    José Correa-Basurto (1)
    César A. Flores-Sandoval (2)
    Itzia I. Padilla-Martínez (3)
    Benjamín Nogueda-Torres (4)
    María de Lourdes Villa-Tanaca (4)
    Feliciano Tamay-Cach (1)
    Juan J. Nolasco-Fidencio (1)
    José G. Trujillo-Ferrara (1)

    1. Departamento de Bioquímica, Laboratorio de Modelado molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico, D.F., Mexico
    2. Instituto Mexicano del Petróleo, 07730, Mexico, D.F., Mexico
    3. Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, 07340, Mexico, D.F., Mexico
    4. Departamento de Parasitología y Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Mexico, D.F., Mexico
  • 刊物主题:Pharmacology/Toxicology; Biochemistry, general; Cell Biology;
  • 出版者:Springer US
  • ISSN:1554-8120
文摘
Trypanosoma cruzi (T. cruzi) is the etiologic agent of Chagas disease. In the bloodstream of humans, this parasite is in the trypomastigote stage and can infect host cells. Its metabolism is dependent on the glycolysis pathway, and one enzyme important for the optimal functioning of this metabolic pathway is triosephosphate isomerase (TIM). The significant difference (48 %) between the interfacial residues of TIMs from humans and trypanosomes and the importance of these residues for the stability of T. cruzi TIM (TcTIM) make this enzyme a possible therapeutic target. In the present study, 204 benzazole derivatives were designed as TcTIM inhibitors, including some well-known ligands. Compounds were analyzed with docking simulations and a QSAR study, and their molecular physicochemical properties were calculated. The five compounds selected from in silico screening were later synthesized and assayed in vitro for their trypanocidal activity on a resistant strain of T. cruzi. All compounds showed affinity for the aromatic cluster of the TcTIM interface, with important electrostatic, hydrophobic and π–π interactions. The benzothiazole derivatives had better physicochemical attributes than the currently prescribed drug, benznidazol. Although BT1and BT2 showed toxicity problems, BT3 did not. The QSAR study indicates that the inhibition of TcTIM improves when the compounds (especially benzothiazoles) are substituted with hyper-conjugated systems and there is a sulfur atom in their structure. It was found with in vitro assays that compound BT3 is a better trypanocidal agent than the currently used drug on the market for the treatment of Chagas disease, benznidazol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700