Explosive lava–water interactions II: self-organization processes among volcanic rootless eruption sites in the 1783-784 Laki lava flow, Iceland
详细信息    查看全文
  • 作者:Christopher W. Hamilton (1)
    Sarah A. Fagents (1)
    Thorvaldur Thordarson (2)
  • 关键词:Volcanic rootless cones ; Pseudocraters ; Phreatomagmatic ; Explosive lava–water interactions ; Laki ; Iceland ; Mars
  • 刊名:Bulletin of Volcanology
  • 出版年:2010
  • 出版时间:May 2010
  • 年:2010
  • 卷:72
  • 期:4
  • 页码:469-485
  • 全文大小:985KB
  • 参考文献:1. Allen CC (1979) Volcano–ice interactions on Mars. J Geophys Res 84:8048-059 CrossRef
    2. Balakrishnan N (1991) Handbook of the logistic distribution. Marcel Dekker, New York
    3. Baloga SM, Glaze LS, Bruno BC (2007) Nearest-neighbor analysis of small features on Mars: applications to tumuli and rootless cones. J Geophys Res 112:E03002. doi:10.1029/2005JE002652 CrossRef
    4. Beggan C, Hamilton CW (2009) New image processing software for analyzing object size-frequency distribution, geometry, orientation, and spatial distribution. Comput Geosci. doi:10.1016/j.cageo.2009.09.003
    5. Bruno BC, Fagents SA, Thordarson T, Baloga SM, Pilger E (2004) Clustering within rootless cone groups on Iceland and Mars: effect of nonrandom processes. J Geophys Res 109:E07009. doi:10.1029/2004JE002273 CrossRef
    6. Bruno BC, Fagents SA, Hamilton CW, Burr DM, Baloga SM (2006) Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: using spatial distribution as a remote sensing tool. J Geophys Res 111:E06017. doi:10.1029/2005JE002510 CrossRef
    7. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445-53 CrossRef
    8. Fagents SA, Thordarson T (2007) Rootless volcanic cones in Iceland and on Mars. In: Chapman MG (ed) The geology of Mars: evidence from earth-based analogs. Cambridge University Press, Cambridge, pp 151-77 CrossRef
    9. Fagents SA, Lanagan P, Greeley R (2002) Rootless cones on Mars: a consequence of lava–ground ice interaction. In: Smellie JL, Chapman MG (eds) Volcano–ice interaction on Earth and Mars. Geol Soc Lond Spec Publ 202:295-17
    10. Frey H, Jarosewich M (1982) Subkilometer Martian volcanoes: properties and possible terrestrial analogs. J Geophys Res 87:9867-879 CrossRef
    11. Frey H, Lowry BL, Chase SA (1979) Pseudocraters on Mars. J Geophys Res 84:8075-086 CrossRef
    12. Glaze LS, Anderson SW, Stofan ER, Smrekar SE (2005) Statistical distribution of tumuli on pahoehoe flow surfaces: analysis of examples in Hawaii and Iceland and potential applications to lava flows on Mars. J Geophys Res 110:B08202. doi:10.1029/2004JB003564 CrossRef
    13. Graham R (1972) An efficient algorithm for determining the convex hull of a finite planar point set. Inf Proc Lett 1:132-33 CrossRef
    14. Greeley R, Fagents SA (2001) Icelandic pseudocraters as analogs to some volcanic cones on Mars. J Geophys Res 106:20527-0546 CrossRef
    15. Hamilton CW, Fagents SA, Thordarson T (2007) Rootless cone archetypes and their relation to lava flow emplacement processes. Abstracts of the 2nd Volcano–Ice Interaction on Earth and Mars Conference, University of British Columbia, Vancouver, 19-2 June 2007
    16. Hamilton CW, Thordarson T, Fagents SA (2010) Explosive lava–water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783-784 Laki lava flow, Iceland. Bull Volcanol. doi:10.1007/s00445-009-0330-6
    17. Head JW, Wilson L (2002) Mars: a review and synthesis of general environments and geological settings of magma/H2O interactions. In: Smellie JL, Chapman MG (eds) Volcano–ice interaction on Earth and Mars. Geol Soc Lond Spec Publ 202:27-7
    18. Jaeger WL, Keszthelyi LP, McEwen AS, Dundas CM, Russell PS (2007) Athabasca Valles, Mars: a lava-draped channel system. Science 317:1709-711. doi:10.1126/science.1143315 CrossRef
    19. Jaeger WL, Keszthelyi LP, McEwen AS, Dundas CM, Russell PS (2008a) Response to comment on “Athabasca Valles, Mars: a lava-draped channel system- Science 320:1588c. doi:10.1126/science.1155124 CrossRef
    20. Jaeger WL, Keszthelyi LP, McEwen AS, Milazzo MP (2008b) Phreatovolcanism in a deflating sheet flow: insights from HiRISE images of Athabasca Valles, Mars. International Association of Volcanology and Chemistry of the Earth’s Interior, General Assembly, Reykjavík, 17-2 August 2008
    21. Lanagan PD, McEwen AS, Keszthelyi LP, Thordarson T (2001) Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophys Res Lett 28:2365-367 CrossRef
    22. Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore
    23. Steingrímsson J (1788) Fulkomid Skrif um Sídueld. Safn til S?gu íslands IV:58-9
    24. Thorarinsson S (1951) Laxargljufur and Laxarhraun: a tephrachronological study. Geograf Annal H1(2):1-9 CrossRef
    25. Thorarinsson S (1953) The crater groups in Iceland. Bull Volcanol 14:3-4 CrossRef
    26. Thordarson T (2003a) The 1783-785 A.D. Laki-Grímsv?tn eruptions I: a critical look at the contemporary chronicles. J?kull 53:1-0
    27. Thordarson T (2003b) The 1783-785 A.D. Laki-Grímsv?tn eruptions II: appraisal based on contemporary accounts. J?kull 53:11-7
    28. Thordarson T, Self S (1993) The Laki (Skaftar Fires) and Grimsvotn eruptions in 1783-5. Bull Volcanol 55:233-63 CrossRef
    29. Thordarson T, Self S, Oskarsson N, Hulsebosch T (1996) Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783-784 AD Laki (Skaftár Fires) eruption in Iceland. Bull Volcanol 58:205-25 CrossRef
    30. Verhulst V (1838) Notice sur la loi que la population suit dans son accrossement. Corr Math Phys 10:113-21
    31. Wohletz K (2002) Water/magma interaction: some theory and experiments on peperite formation. J Volcanol Geotherm Res 114:19-5 CrossRef
  • 作者单位:Christopher W. Hamilton (1)
    Sarah A. Fagents (1)
    Thorvaldur Thordarson (2)

    1. Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i, 1680 East-West Road, Honolulu, HI, 96822, USA
    2. School of Geosciences, University of Edinburgh, Edinburgh, Scotland, UK
  • ISSN:1432-0819
文摘
We have applied quantitative geospatial analyses to rootless eruption sites in the Hnúta and Hrossatungur groups of the 1783-784 Laki lava flow to establish how patterns of spatial distribution can be used to obtain information about rootless cone emplacement processes and paleo-environments. This study utilizes sample-size-dependent nearest neighbor (NN) statistics and Voronoi tessellations to quantify the spatial distribution of rootless eruption sites and validate the use of statistical NN analysis as a remote sensing tool. Our results show that rootless eruption sites cluster in environments with abundant lava and water resources, but competition for limited groundwater in these clusters can cause rootless eruption sites to develop repelled distributions. This pattern of self-organization can be interpreted within the context of resource availability and depletion. Topography tends to concentrate lava (fuel) and water (coolant) within topographic lows, thereby promoting explosive lava–water interactions in these regions. Given an excess supply of lava within broad sheet lobes, rootless eruption sites withdraw groundwater from their surroundings until there is insufficient water to maintain analogs to explosive molten fuel–coolant interactions. Rootless eruption sites may be modeled as a network of water extraction wells that draw down the water table in their vicinity. Rootless eruptions at locations with insufficient groundwater may either fail to initiate or terminate before explosive activity has ceased at nearby locations with a greater supply of water, thus imparting a repelled distribution to observed rootless eruption sites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700