Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?
详细信息    查看全文
  • 作者:Francesco Agostini ; Andrew S. Gregory ; Goetz M. Richter
  • 关键词:Soil organic carbon ; Switchgrass ; Miscanthus ; Model ; Willow ; Poplar ; Short ; rotation woody crops
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:8
  • 期:3
  • 页码:1057-1080
  • 全文大小:1,269 KB
  • 参考文献:1.Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24(1):1-1. doi:10.-080/-735268059091039-
    2.Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335-61
    3.Lovett AA, Sünnenberg GM, Richter GM, Dailey AG, Riche AB, Karp A (2009) Biomass production and land use trade-offs revealed by GIS constraint and yield mapping of Miscanthus in England. Bio Energy Res 2(1):17-9. doi:10.-007/?s12155-008-9030-x
    4.Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71(1):155-62
    5.Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122(3):325-39. doi:10.-016/?j.?agee.-007.-1.-26
    6.Lewandowski I, Heinz A (2003) Delayed harvest of Miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19(1):45-3
    7.Volk TA, Verwijst T, Tharakan PJ, Abrahamson LP, White EH (2004) Growing fuel a sustainability assessment of willow biomass crops. Front Ecol Environ 2(8):411-18
    8.Garten CT (2012) Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum). Bioenergy Res 5(1):124-38. doi:10.-007/?s12155-011-9154-2
    9.Bransby DI, McLaughlin SB, Parrish DJ (1998) A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass Bioenergy 14(4):379-84
    10.Garten CT, Wullschleger SD, Classen AT (2011) Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 35(1):214-26. doi:10.-016/?j.?biombioe.-010.-8.-13
    11.Poeplau C, Don A (2014) Soil carbon changes under Miscanthus driven by C4 accumulation and C3 decomposition—toward a default sequestration function. GCB Bioenergy 6(4):327-38. doi:10.-111/?gcbb.-2043
    12.Don A, Osborne B, Hastings A (2011) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Chang Biol Bionergy 4:372-91
    13.Heaton E, Dohleman FG, Miguez AF (2010) Miscanthus: a promising biomass crop. Adv Bot Res 56:75-37
    14.Battle-Aguilar J, Brovelli A, Porporato A, Barry DA (2010) Modelling soil carbon and nitrogen cycles during land use change. A review. Agron Sustain Dev 31(2):251-74. doi:10.-051/?agro/-010007
    15.Thomas ARC, Bond AJ, Hiscock KM (2013) A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water, carbon and nitrogen cycling. GCB Bioenergy 5(3):227-42. doi:10.-111/?j.-757-1707.-012.-1198.?x
    16.Sartori F, Lal R, Ebinger MH, Parrish DJ (2006) Potential soil carbon sequestration and CO2 offset by dedicated energy crops in the USA. Crit Rev Plant Sci 25(25):441-72
    17.Liebig MA, Schmer MR, Vogel KP, Mitchell RB (2008) Soil carbon storage by switchgrass grown for bioenergy. Bioenergy Res 1(3-):215-22. doi:10.-007/?s12155-008-9019-5
    18.Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17(3):675-91PubMed
    19.Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Glob Chang Biol 13(11):2296-307
    20.Larsen SU, Jorgensen U, Kjeldsen JB, Laerke PE (2014) Long-term Miscanthus yields influenced by location, genotype, row distance, fertilization and harvest season. Bioenergy Res 7(2):620-35. doi:10.-007/?s12155-013-9389-1
    21.Meehan PG, McDonnell KP, Finnan JM (2013) An assessment of the effect of harvest time and harvest method on biomass loss for Miscanthus × giganteus. Glob Chang Biol Bioenergy 5(4):400-07. doi:10.-111/?j.-757-1707.-012.-1205.?x
    22.Berhongaray G, El Kasmioui O, Ceulemans R (2013) Comparative analysis of harvesting machines on an operational high-density short rotation woody crop (SRWC) culture: one-process versus two-process harvest operation. Biomass Bioenergy 58:333-42. doi:10.-016/?j.?biombioe.-013.-7.-03
    23.Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric Ecosyst Environ 112(4):335-46
    24.Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric Ecosyst Environ 86(2):135-44
    25.Garten CT, Wullschleger SD (2000) Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis. J Environ Qual 29(2):645-53. doi:10.-134/?jeq2000.-047242500290002-036x
    26.Rytter RM (2012) The potential of willow and poplar plantations as carbon sinks
  • 作者单位:Francesco Agostini (1)
    Andrew S. Gregory (1)
    Goetz M. Richter (1)

    1. Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Soil organic carbon (SOC) changes associated with land conversion to energy crops are central to the debate on bioenergy and their potential carbon neutrality. Here, the experimental evidence on SOC under perennial energy crops (PECs) is synthesised to parameterise a whole systems model and to identify uncertainties and knowledge gaps determining PECs being a sink or source of greenhouse gas (GHG). For Miscanthus and willow (Salix spp.) and their analogues (switchgrass, poplar), we examine carbon (C) allocation to above- and belowground residue inputs, turnover rates and retention in the soil. A meta-analysis showed that studies on dry matter partitioning and C inputs to soils are plentiful, whilst data on turnover are rare and rely on few isotopic C tracer studies. Comprehensive studies on SOC dynamics and GHG emissions under PECs are limited and subsoil processes and C losses through leaching remain unknown. Data showed dynamic changes of gross C inputs and SOC stocks depending on stand age. C inputs and turnover can now be specifically parameterised in whole PEC system models, whilst dependencies on soil texture, moisture and temperature remain empirical. In conclusion, the annual net SOC storage change exceeds the minimum mitigation requirement (0.25 Mg C ha? year?) under herbaceous and woody perennials by far (1.14 to 1.88 and 0.63 to 0.72 Mg C ha? year?, respectively). However, long-term time series of field data are needed to verify sustainable SOC enrichment, as the physical and chemical stabilities of SOC pools remain uncertain, although they are essential in defining the sustainability of C sequestration (half-life >25 years). Keywords Soil organic carbon Switchgrass Miscanthus Model Willow Poplar Short-rotation woody crops

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700