x (Nd1/2Ta1/2) x O3 lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method. The phase structure, microstructure, and dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. A reduction of small amount of oxygen vacancies, a significant effect in grain size due to the (Nd1/2Ta1/2)4+ doping, led to the enhancements of the dielectric, ferroelectric and piezoelectric properties of Bi1/2Na1/2Ti1?em class="EmphasisTypeItalic">x (Nd1/2Ta1/2) x O3 ceramics, and the optimized modification was x?=?0.006. The electrical properties of modified samples were deteriorated with further doping (x >0.006), owing to an increase in the concentration of oxygen vacancies. The BNT-NT ceramics with x?=?0.006 was found to have a high remnant polarization (P r ) of 34.7?μC/cm2 and a piezoelectric constant (d 33 ) of 110 pC/N." />
Investigation of structural and electrical properties of B-site complex ion (Nd1/2Ta1/2)4+-doped Bi1/2Na1/2TiO3 lead-free piezoelectric ceramic
详细信息    查看全文
  • 作者:Renfei Cheng ; Yuefeng Duan ; Ruiqing Chu
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:26
  • 期:7
  • 页码:5409-5415
  • 全文大小:1,465 KB
  • 参考文献:1.K. Carl, K. Hardtl, Ferroelectrics 17, 473 (1977)View Article
    2.J. Kuwata, K. Uchino, S. Nomura, Ferroelectrics 37, 579 (1981)View Article
    3.Y. Liu, Y. Lu, S. Dai, J. Alloy. Compd. 484, 801 (2009)View Article
    4.S. Muensit, P. Sukwisut, P. Khaenamkeaw, S. Lang, Appl. Phys. A 92, 659 (2008)View Article
    5.B. Ko, J.S. Jung, S.Y. Lee, VTT Symp. 15, 1912 (2006)
    6.L. Jiao, F.F. Guo, J.F. Wang, Z.B. Gu et al., J. Mater. Sci. Mater. Electron. 24, 4080 (2013)View Article
    7.Y. Yuan, E. Li, B. Tang, L. Bo, X. Zhou, J. Mater. Sci. Mater. Electron. 23, 309 (2011)View Article
    8.L.E. Cross, Ferroelectrics 151, 305 (1994)View Article
    9.T. Moriyama, A. Kan, H. Ogawa, J. Ceram. Soc. Jpn. 121, 644 (2013)View Article
    10.J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, X. Gao, J. Appl. Phys. 113, 114106 (2013)View Article
    11.J. Hao, B. Shen, J. Zhai, H. Chen, J. Appl. Phys. 115, 034101 (2014)View Article
    12.B. Parija, T. Badapanda, S. Panigrahi, T.P. Sinha, J. Mater. Sci. Mater. Electron. 24, 402 (2012)View Article
    13.T. Moriyama, A. Kan, H. Ogawa, J. Ceram. Soc. Jpn. 121, 679 (2013)View Article
    14.T. Takenaka, K-i Maruyama, K. Sakata. J. Appl. Phys. Jpn. 30, 2236 (1991)View Article
    15.T. Takenaka, K. Sakata, Ferroelectrics 95, 153 (1989)View Article
    16.Y. Park, K. Cho, J. Am. Ceram. Soc. 83, 135 (2000)View Article
    17.S.B. Park, W.K. Choo, J. Appl. Phys. Jpn. 39, 5560 (2000)View Article
    18.Y. Park, Mater. Res. Bull. 34, 1195 (1999)View Article
    19.Y. Park, K.M. Knowles, J. Phys. D Appl. Phys. 32, 504 (1999)View Article
    20.D.A. Sagala, S. Nambu, J. Am. Ceram. Soc. 75, 2573 (1992)View Article
    21.Z. Yang, Y. Hou, B. Liu, L. Wei, Ceram. Int. 35, 1423 (2009)View Article
    22.V. Pal, R. Dwivedi, O. Thakur, Curr. Appl. Phys. 14, 99 (2014)View Article
    23.R.T. Shannon, Acta. Crystallogr. A 32, 751 (1976)View Article
    24.A. Maqbool, A. Hussain, J.U. Rahman et al., Trans. Nonferr. Metal. Soc. 24, s146 (2014)View Article
    25.J.U. Rahman, A. Hussain, A. Maqbool et al., J. Alloy. Compd. 593, 97 (2014)View Article
    26.P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, J. Hao, Mater. Des. 31, 796 (2010)View Article
    27.A. Singh, R. Chatterjee, J. Am. Ceram. Soc. 96, 509 (2013)View Article
    28.P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, J. Hao, Mater. Chem. Phys. 124, 1065 (2010)View Article
    29.S. Steinsvik, R. Bugge, J. Gj?nnes, J. TAFT?, T. Norby, J. Phys. Chem. Solids 58, 969 (1997)View Article
    30.A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, NewYork, 2003)View Article
    31.H. Zhang, H. Yan, M.J. Reece, J. Appl. Phys. 106, 044106 (2009)View Article
  • 作者单位:Renfei Cheng (1)
    Yuefeng Duan (1)
    Ruiqing Chu (1)
    Jigong Hao (1)
    Juan Du (1)
    Zhijun Xu (1)
    Guorong Li (2)

    1. College of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, People’s Republic of China
    2. The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
The Bi1/2Na1/2Ti1?em class="EmphasisTypeItalic">x (Nd1/2Ta1/2) x O3 lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method. The phase structure, microstructure, and dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. A reduction of small amount of oxygen vacancies, a significant effect in grain size due to the (Nd1/2Ta1/2)4+ doping, led to the enhancements of the dielectric, ferroelectric and piezoelectric properties of Bi1/2Na1/2Ti1?em class="EmphasisTypeItalic">x (Nd1/2Ta1/2) x O3 ceramics, and the optimized modification was x?=?0.006. The electrical properties of modified samples were deteriorated with further doping (x >0.006), owing to an increase in the concentration of oxygen vacancies. The BNT-NT ceramics with x?=?0.006 was found to have a high remnant polarization (P r ) of 34.7?μC/cm2 and a piezoelectric constant (d 33 ) of 110 pC/N.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700