Nonlocal plate model for dynamic pull-in instability analysis of circular higher-order shear deformable nanoplates including surface stress effect
详细信息    查看全文
  • 作者:Saeid Sahmani ; Mohsen Bahrami
  • 关键词:Nanomechanics ; Pull ; in phenomenon ; Nonlocal elasticity continuum ; Surface stress ; Higher ; order shear deformation plate theory
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:29
  • 期:3
  • 页码:1151-1161
  • 全文大小:3,551 KB
  • 参考文献:1. Osterberg, P. M., Senturia, S. D. (1997) M-TEST a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromechanical Syst. 6: pp. 107-118 CrossRef
    2. Bernstein, D., Guidotti, P., Pelesko, J. A. (2000) Mathematical analysis of an electrostatically actuated MEMS device.
    3. Younis, M. I., Abdel-Rahman, E. M., Nayfeh, A. (2003) A reduced-order model for electrically actuated microbeambased MEMS. J. Microelectromechanical Syst. 12: pp. 672-680 CrossRef
    4. Batra, R. C., Porfiri, M., Spinello, D. (2006) Electromechanical model of electrically actuated narrow microbeams. J. Microelectromechanical Syst. 15: pp. 1175-1189 CrossRef
    5. Nayfeh, A. H., Younis, M. I., Abdel-Rahman, E. M. (2007) Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics 48: pp. 153-163 CrossRef
    6. Nayfeh, A. H., Younis, M. I. (2004) Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14: pp. 1711-1717 CrossRef
    7. Zhao, X. P., Abdel-Rahman, E. M., Nayfeh, A. H. (2004) A reduced-order model for electrically actuated microplates. J. Micromech. Microeng. 14: pp. 900-906 CrossRef
    8. Machauf, A., Nemirovsky, Y., Dinnar, U. (2005) A membrane micropump electrostatically actuated across the working fluid. J. Micromech. Microeng. 15: pp. 2309-2316 CrossRef
    9. Mukherjee, S., Bao, Z. P., Roman, M., Aubry, N. (2005) Nonlinear mechanics of MEMS plates with a total Lagrangian approach. Computers & Struct. 83: pp. 758-768 CrossRef
    10. Batra, R. C., Porfiri, M., Spinello, D. (2008) Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force. Int. J. Solids Struct. 45: pp. 3558-3583 CrossRef
    11. Chao, P. C. P., Chiu, C. W., Tsai, C. Y. (2006) A novel method to predict the pull-in voltage in a closed form for microplates actuated by a distributed electrostatic force. J. Micromech. Microeng. 16: pp. 986-998 CrossRef
    12. Ko, J. H., Jeong, J., Choi, J., Cho, M. (2011) Quality factor in clamping loss of nano-cantilever resonators. Appl. Phys. Lett. 98: pp. 171909 CrossRef
    13. Lam, D. C. C., Chong, A. C. M. (1999) Indentation model and strain gradient plasticity law for glassy polymers. J. Mater. Research 14: pp. 3784-3788 CrossRef
    14. Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., Tong, P. (2003) Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51: pp. 1477-1508 CrossRef
    15. McFarland, A. W., Colton, J. S. (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15: pp. 1060-1067 CrossRef
    16. Nix, W. D. (1989) Mechanical properties of thin films. Metallurgical Transactions A-.Phys. Metallurgy Mater. Sci. 20: pp. 2217-2245 CrossRef
    17. Fleck, N. A., Muller, G. M., Ashby, M. F., Hutchinson, J. W. (1994) Strain gradient plasticity: theory and experiment. Acta Metallurgica Et Materialia 42: pp. 475-487 CrossRef
    18. Po
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
In the present paper, dynamic pull-in instability and free vibration characteristics of circular higher-order shear deformable nanoplates subjected to hydrostatic and electrostatic forces are studied including surface stress effect. For this purpose, Eringen’s nonlocal elasticity continuum in conjunction with the Gurtin-Murdoch elasticity theory is incorporated into the classical higher-order shear deformation plate theory to develop size-dependent plate model able to consider both of small scale and surface stress effects. The non-classical governing differential equations are then discretized along with simply supported and clamped edge supports by employing generalized differential quadrature (GDQ) method. To evaluate the size-dependent pull-in voltage of nanoplates, the hydrostatic-electrostatic actuation is assumed to be calculated by neglecting the fringing field effects and utilizing the parallel plate approximation. It is demonstrated that the pull-in instability occurs at lower voltages for nanoplates with higher values of nonlocal parameters. Moreover, it is found that surface stress effect can increase or decrease the pull-in voltage of nanoplates which depends on the sign of surface elastic constants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700