Natural variation of Arabidopsis thaliana reveals that aluminum resistance and proton resistance are controlled by different genetic factors
详细信息    查看全文
  • 作者:Takashi Ikka (1)
    Yuriko Kobayashi (1)
    Satoshi Iuchi (2)
    Nozomu Sakurai (3)
    Daisuke Shibata (3)
    Masatomo Kobayashi (2)
    Hiroyuki Koyama (1)
  • 刊名:Theoretical and Applied Genetics
  • 出版年:2007
  • 出版时间:September 2007
  • 年:2007
  • 卷:115
  • 期:5
  • 页码:709-719
  • 全文大小:505KB
  • 参考文献:1. Alva AK, Asher CJ, Edwards DG (1986) The role of calcium in alleviating aluminum toxicity. Aust J Agric Res 37:375-82 CrossRef
    2. Arihara A, Kumagai R, Koyama H, Ojima K (1991) Aluminum tolerance of carrot / (Daucus carota L.) plants regenerated from selected cell cultures. Soil Sci Plant Nutr 37:699-05
    3. Basten CJ, Weir BS, Zeng Z-B (1994) Zmap-a QTL cartographer. In: Smith C, Gavora JS, Benkel B, Chesnais J, Fairful W, Gibson JP, Kennedy BW, Burnside EB (eds) Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software 22:65-6
    4. Basu U, Good AG, Taylor GJ (2001) Transgenic / Brassicanapus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1278-269 CrossRef
    5. Chase K, Adler FR, Lark KG (1997) Epistat: a computer program for identifying and testing interaction between pairs of quantitative trait loci. Theor Appl Genet 4:724-30 CrossRef
    6. Churchill AG, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963-71
    7. Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat ( / Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:685-93
    8. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-4868 CrossRef
    9. Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in / Arabidopsis. Plant Physiol 127:918-27 CrossRef
    10. Foy CD (1988) Plant adaptation to acid aluminum-toxic soils. Commun Soil Sci Plant Anal 19:959-87
    11. Fujiwara T, Hirai YM, Chino M, Komeda Y, Naito S (1992) Effect of sulfur nutrition on expression of soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263-68
    12. Gonzalez A, Steffen KL, Lynch JP (1998) Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol 108:493-04 CrossRef
    13. Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and characterization of aluminum tolerance loci in / Arabidopsis (Landsberg / erecta?(×?Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936-48 CrossRef
    14. Hoekenga OA, Maron LG, Pineros MA, Cancado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) / AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in / Arabidopsis. Proc Natl Acad Sci USA 103:9738-743 CrossRef
    15. Horst WJ, Fecht M, Naumann A, Wissemeier A, Maier P (1999) Physiology of manganese toxicity and tolerance in / Vigna unguiculata (L.) Walp. J Plant Nutr 162:263-74 CrossRef
    16. Ishitani M, Rao I, Wenzlb P, Beebea S, Tohme J (2004) Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: drought and aluminum toxicity as case studies. Field Crops Res 90:35-5 CrossRef
    17. Kaneko M, Yoshimura E, Nishizawa NK (1999) Time course study of aluminum-induced callose formation in barley roots as observed by digital microscopy and low-vacuum scanning electron microscopy. Soil Sci Plant Nutr 45:701-12
    18. Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44:901-08 CrossRef
    19. Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513-20 CrossRef
    20. Kinraide TB, Parker DR (1989) Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant Cell Environ 12:479-87 CrossRef
    21. Kinraide TB, Parker DR (1990) Apparent phytotoxicity of mononuclear hydroxy-aluminium to four dicotyledous species. Physiol Plant 79:283-88 CrossRef
    22. Kinraide TB, Ryan PR, Kochian LV (1992) Interaction effects of Al3+, H+ and other cations on root elongation considered in items of cell-surface electric potential. Plant Physiol 99:1461-468
    23. Knoepp JD, Swank WT (1994) Long-term soil chemistry change in aggrading forest ecosystem. Soil Sci Soc Am J 58:325-31 CrossRef
    24. Kobayashi Y, Koyama H (2002) QTL analysis of Al tolerance in recombinant inbred lines of / Arabidopsis thaliana. Plant Cell Physiol 43:1526-533 CrossRef
    25. Kobayashi Y, Furuta Y, Ohno T, Hara T, Koyama H (2005) Quantitative trait loci controlling aluminium tolerance in two accessions of / Arabidopsis thaliana (Landsberg / erecta and Cape Verde Islands). Plant Cell Environ 28:1516-524 CrossRef
    26. Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plant Physiol Plant Mol Biol 46:237-60 CrossRef
    27. Koyama H, Okawara R, Ojima K, Yamaya T (1988) Re-evaluation of characteristics of a carrot cell line previously selected as aluminium-tolerant cell line. Physiol Plant 74:683-87 CrossRef
    28. Koyama H, Toda T, Yokota S, Zuraida D, Hara T (1995) Effect of aluminum and pH on root growth and cell viability in / Arabidopsis thaliana strain Landsberg in hydroponic culture. Plant Cell Physiol 36:201-05
    29. Koyama H, Toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in / Arabidopsis thaliana: Pectin–Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot 52:361-69 CrossRef
    30. Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-81 CrossRef
    31. Lazof DB, Holland MJ (1999) Evaluation of the aluminium-induced root growth inhibition in isolation from low pH effects in / Glycine max, / Pisum sativum and / Phaseolus vulgaris. Aust J Plant Physiol 26:147-57 CrossRef
    32. Linkes GE, Driscoll CT, Buso DC (1997) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244-46
    33. Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in / Arabidopsis thaliana. Plant J 4:745-50 CrossRef
    34. López-Bucio J, Martínez de la Vega O, Guevara-García A, Herrera-Estrella L (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotech 18:450-53 CrossRef
    35. Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Takeda K (2004) Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot 55:1335-341 CrossRef
    36. Ma JF, Nagao S, Huang CF, Nishimura M (2005) Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol 46:1054-061 CrossRef
    37. Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J (2001) Natural variation in light sensitivity of / Arabidopsis. Nat Genet 29:441-46 CrossRef
    38. Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol 96:737-43 CrossRef
    39. Netting AG (2002) pH, abcisic acid and the integration of metabolism in plants under stressed and non-stresses conditions. II. Modifications in modes of metabolism induced by variation in the tension on the water column and by stress. J Exp Bot 53:151-73 CrossRef
    40. Neumann G, Massonneau A, Martinoia E, Romheld V (1999) Physiological adaptations to phosphorous deficiency during proteoid root development in white lupins. Planta 208:373-82 CrossRef
    41. Rangel AF, Mobin M, Rao IM, Horst WJ (2005) Proton toxicity interferes with the screening of common bean ( / Phaseolus vulgaris L.) genotypes for aluminium resistance in nutrient solution. J Plant Nutr Soil Sci 168:607-16 CrossRef
    42. Rengel Z (1992) Role of calcium in aluminum toxicity. New Phytol 121:499-13 CrossRef
    43. Rengel Z, Zhang W (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295-14 CrossRef
    44. Ryan PR, Delhaize E, Randall PJ (1995) Characterization of Al-stimulated malate efflux from the root apices of Al-tolerant genotypes of wheat. Planta 196:103-10 CrossRef
    45. Salazar FS, Pandey S, Narro L, Perez JC, Ceballos H, Parentoni SN, Bahia Filho AFC (1997) Diallel analysis of acid-soil tolerant and intolerant tropical maize populations. Crop Sci 37:1457-462 CrossRef
    46. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645-53 CrossRef
    47. Schireiner KA, Hoddinott J, Taylor GJ (1994) Aluminum-induced deposition of (1,3)-beta-glucans (callose) in / Triticum aestivum L. Plant Soil 162:273-80 CrossRef
    48. Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang ZM, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1,3-?-d -glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991-005 CrossRef
    49. Speher CR, Monteiro PMFO, Zuffo NL (1993) Soybean breeding in central Brazil. In: Arantes NE, Souza PIM (eds) Proceedings of the Symposium Soybean Cult Braz Cerrados (Savannas), Brazil, pp 229-51
    50. Spehar CR, Sauza LAC (1999) Selecting Soybean ( / Glycine max L. Merrill) tolerant to low-calcium stress in short term hydroponics experiment. Euphytica 106:35-8 CrossRef
    51. Toda T, Koyama H, Hara T (1999) A simple hydroponic culture method for the development of a highly viable root system in / Arabidopsis thaliana. Biosci Biotechnol Biochem 63:210-12 CrossRef
    52. Wissemeier AH, Diening A, Hergenr?der A, Horst WJ, Mix-Wagner G (1992) Callose formation as parameter for assessing genotypical plant tolerance of aluminium and manganese. Plant Soil 146:67-5 CrossRef
    53. Yamamoto Y, Kobayashi Y, Devi S, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63-2 CrossRef
    54. Yang JL, Zheng SJ, He YF, Matsumoto H (2005) Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot 56:1197-203 CrossRef
    55. Yokota S, Ojima K (1995) Physiological response of root tip of alfalfa to low pH and aluminium stress in water culture. Plant Soil 171:163-65 CrossRef
  • 作者单位:Takashi Ikka (1)
    Yuriko Kobayashi (1)
    Satoshi Iuchi (2)
    Nozomu Sakurai (3)
    Daisuke Shibata (3)
    Masatomo Kobayashi (2)
    Hiroyuki Koyama (1)

    1. Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, 501-1193, Japan
    2. Experimental Plant Division, Biological Resource Center, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, 305-0074, Japan
    3. Laboratory of Genome Biotechnology, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
  • ISSN:1432-2242
文摘
Root growth of Arabidopsis thaliana is inhibited by proton rhizotoxicity in low ionic strength media when the pH of the medium is lower than 5.0. QTL analysis at pH 4.7 revealed that two major QTLs on chromosome 2 and 5 and an additional six epistatic interacting loci pairs control proton resistance in the Ler/Col recombinant inbred population. These genetic factors are independently associated with proton resistance in comparison to the known Al resistant QTL and epistases detected in the same RI population at 4?μM Al at pH 5.0. This indicates that different genetic factors regulate mechanisms of resistance to each stress in this plant species. No correlation was observed between proton resistance and Al resistance among 260 accessions indicating that there is no simple relationship between the genetic factors controlling each trait. Several accessions with different combinations of proton (pH 4.7) and Al (4?μM Al at pH 5.0) resistances were identified by phenotypic cluster analysis. Although this grouping was performed using root growth data, the degree of resistance was correlated with their sensitivity to short-term damage in the root tip, indicating that the same resistance mechanism controls proton resistance at different time scales. Resistant accessions grew better than sensitive ones in acid soil culture. This suggests that proton resistance in hydroponic conditions could be an important index in breeding programs to improve productivity in acid soil, at least in acid sensitive plant species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700