Polymer coatings for sensitive analysis of colloidal silica nanoparticles in water
详细信息    查看全文
  • 作者:Samar Alsudir (1)
    Edward P. C. Lai (1)
  • 关键词:Capillary electrophoresis ; Detection sensitivity ; Nanomaterials ; Polyhydroxypropyl methacrylate ; Polydopamine ; Silica nanoparticles
  • 刊名:Colloid & Polymer Science
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:292
  • 期:6
  • 页码:1289-1296
  • 全文大小:
  • 参考文献:1. Weber D, Sharma R, Botnara? S, Pham DV, Steiger J, De Cola L (2013) Base-etch removal of a ligand shell in thin films of ZnO nanoparticles for electronic applications. J Mater Chem C 1:7111-116 CrossRef
    2. Gong ZG (2013) Nanotechnology application in sports. Adv Mat Res 662:186-89 CrossRef
    3. Abramova A, Gedanken A, Popov V, Ooi EH, Mason TJ, Joyce EM, Beddow J, Bayazitov V (2013) A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for its implementation. Mater Lett 96:121-24 CrossRef
    4. Nagelreiter C, Valenta C (2013) Size analysis of nanoparticles in commercial O/W sunscreens. Int J Pharm 456(2):517-19 CrossRef
    5. Sinclai R, Li H, Madsen S, Dai H (2013) HREM analysis of graphite-encapsulated metallic nanoparticles for possible medical applications. Ultramicroscopy 134:167-74 CrossRef
    6. Bosch J, Luchini A, Pichini S, Tamburro D, Fredolini C, Liotta L, Petricoin E, Pacifici R, Facchiano F, Segura J, Garaci E, Gutiérrez-Gallego R (2013) Analysis of urinary human growth hormone (hGH) using hydrogel nanoparticles and isoform differential immunoassays after short recombinant hGH treatment: preliminary results. J Pharmaceut Biomed 85:194-97 CrossRef
    7. Li Y, Zhang X, Deng C (2013) Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev 42:8517-539 CrossRef
    8. Liu J, Tian M, Liang Z (2013) DNA analysis based on the electrocatalytic amplification of gold nanoparticles. Electrochim Acta 113:186-93 CrossRef
    9. Li J, Zhao Z, Feng J, Gao J, Chen Z (2013) Understanding the metabolic fate and assessing the biosafety of MnO nanoparticles by metabonomic analysis. Nanotechnology 24:455102 CrossRef
    10. Suliman YAO, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel SH (2013) Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol. doi:10.1002/tox.21880
    11. Valdiglesias V, Costa C, Sharma V, Kili G, Psaro E, Teixeira P, Dhawan A, Laffon B (2013) Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol 57:352-61 CrossRef
    12. Wehling J, Volkmann E, Grieb T, Rosenauer A, Maas M, Treccani L, Rezwan K (2013) A critical study: assessment of the effect of silica particles from 15 to 500?nm on bacterial viability. Environ Pollut 176:292-99 CrossRef
    13. Wang J, Lu AH, Li M, Zhang W, Chen YS, Tian DX, Li WC (2013) Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano 7:4902-910 CrossRef
    14. Achatz DE, Heiligtag FJ, Li X, Link M, Wolfbeis OS (2010) Colloidal silica nanoparticles for use in click chemistry-based conjugations and fluorescent affinity assays. Sensors Actuators B Chem 150:211-19 CrossRef
    15. Graf C, Gao Q, Schütz I, Noufele CN, Ruan W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S, Vogt A, Lademann J, Haucke V, Rühl E (2012) Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28:7598-613 CrossRef
    16. Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed 50:4056-066 CrossRef
    17. Egerton TA (2013) The influence of surface alumina and silica on the photocatalytic degradation of organic pollutants. Catalysts 3:338-62 CrossRef
    18. Barceló D, Farré M (2012) Analysis and Risk of Nanomaterials in Environmental and Food Samples, Series: Comprehensive Analytical Chemistry. Elsevier 59: 1-415
    19. Delay M, Barceló D, Farré M (2013) Analysis and risk of nanomaterials in environmental and food samples. Anal Bioanal Chem 405:7557-558 CrossRef
    20. Bouwmeester H, Lynch I, Marvin HJP, Dawson KA, Berges M, Braguer D, Byrne HJ, Casey A, Chambers G, Clift MJD, Elia G, Fernandes TF, Fjellsb LB, Hatto P, Juillerat L, Klein C, Kreyling WG, Nickel C, Riediker M, Stone V (2011) Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5:1-1 CrossRef
    21. Markus AA, Parsons JR, Roex EWM, Kenter GCM, Laane RWPM (2013) Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse. Sci Total Environ 456-57:154-60 CrossRef
    22. Timerbaev AR, Hartinger CG, Keppler BK (2006) Metallodrug research and analysis using capillary electrophoresis. Trends Anal Chem 25:868-75 CrossRef
    23. Harris DC (2006) Quantitative Chemical Analysis, Seventhth edn. W. H. FreeMan and Company, New York
    24. DeMaleki Z, Lai EPC, Dabek-Zlotorzynska E (2010) Capillary electrophoresis characterization of molecularly imprinted polymer particles in fast binding with 17b-estradiol. J Sep Sci 33:2796-803 CrossRef
    25. Chu HH, Fu DC (1998) Preparation of poly(hydroxyethy1 methacrylate) and poly(hydroxypropy1 methacrylate) lattices. Macromol Rapid Commun 19:107-10 CrossRef
    26. Ali AMI, Pareek P, Sewell L, Schmid A, Fujii S, Armes SP, Shirley IM (2007) Synthesis of poly(2-hydroxypropyl methacrylate) latex particles via aqueous dispersion polymerization. Soft Matter 3:1003-013 CrossRef
    27. 420875 ALDRICH, LUDOX? AM colloidal silica, 30 wt. % suspension in H2O. http://www.sigmaaldrich.com/catalog/product/aldrich/420875?lang=en®ion=CA
    28. Costa ROR, Vasconcelos WL (2001) Organic/inorganic nanocomposite star polymers via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores. Macromolecules 34:5398-407 CrossRef
    29. Christian P, Giles MR, Griffiths RMT, Irvine DJ, Major RC, Howdle SM (2000) Free radical polymerization of methyl methacrylate in supercritical carbon dioxide using a pseudo-graft stabilizer: effect of monomer, initiator, and stabilizer concentrations. Macromolecules 33:9222-227 CrossRef
  • 作者单位:Samar Alsudir (1)
    Edward P. C. Lai (1)

    1. Department of Chemistry, Ottawa-Carleton Chemistry Institute, Carleton University, Ottawa, ON, K1S 5B6, Canada
  • ISSN:1435-1536
文摘
A new analytical approach has been developed for the sensitive detection of trace nanomaterials in water using silica as model inorganic nanoparticles. Our novel approach is based on coating of the nanoparticles with a polymer to make them larger in size for better ultraviolet (UV) light absorption. These polymer-coated nanoparticles can be separated from the monomer and polymer by capillary electrophoresis (CE) due to differences in their ionic charge, size, and surface functionality. Controlled polymerization of 2-hydroxypropyl methacrylate (HPMA) on silica nanoparticles increased their UV detection sensitivity by 5--fold. A second coating with polydopamine produced an extra 2-fold increase of the UV detection sensitivity. With both polyhydroxypropyl methacrylate and polydopamine coatings, a significant total enhancement of 10-4-fold in detection sensitivity was attained. Alternatively, addition of bisphenol A or polyvinyl alcohol to the HPMA polymerization mixture resulted in 9-0-fold increase of SiO2 detection sensitivity due to additional absorption of the UV detector light.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700