Assessing similarity analysis of chromatographic fingerprints of Cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation
详细信息    查看全文
  • 作者:Alexandra E. Schulze ; Dalene De Beer…
  • 关键词:Honeybush ; Chemometric analysis ; Glucose uptake ; Mangiferin ; Isomangiferin ; Scolymoside
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:408
  • 期:2
  • 页码:639-649
  • 全文大小:784 KB
  • 参考文献:1.Street RA, Prinsloo G (2013) Commercially important medicinal plants of South Africa: a review. J Chem 2013:16. doi:10.​1155/​2013/​205048 CrossRef
    2.Bertram MY, Jaswal AVS, Van Wyk VP, Levitt NS, Hofman KJ (2013) The non-fatal disease burden caused by type 2 diabetes in South Africa, 2009. Glob Health Action 6:19244. doi:10.​3402/​gha.​v6i0.​19244
    3.Joubert E, Gelderblom WCA, Louw A, de Beer D (2008) South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides—a review. J Ethnopharmacol 119:376–412CrossRef
    4.Chellan N, Joubert E, Strijdom H, Roux C, Louw J, Muller CJF (2014) Aqueous extract of unfermented honeybush (Cyclopia maculata) attenuates STZ-induced diabetes and β-cell cytotoxicity. Planta Med 80:622–629CrossRef
    5.Muller CJF, Joubert E, Gabuza K, De Beer D, Fey SJ, Louw J (2011) Assessment of the antidiabetic potential of an aqueous extract of honeybush (Cyclopia intermedia) in streptozotocin and obese insulin resistant Wistar rats. In: Rasooli I (ed) Phytochemicals. Bioactives and impact on health. Intech, Croatia, pp 311–332
    6.Dineshkumar B, Mitra A, Manjunatha M (2010) Studies on the anti-diabetic and hypolipidemic potentials of mangiferin (xanthone glucoside) in streptozotocin-induced type 1 and type 2 diabetic model rats. Int J Adv Pharm Sci 1:75–85CrossRef
    7.Miura T, Ichiki H, Hashimoto I, Iwamoto N, Kao M, Kubo M, Ishihara E, Komatsu Y, Okada M, Ishida T, Tanigawa K (2001) Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 8:85–87CrossRef
    8.Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J (2005) Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 97:497–501CrossRef
    9.Wang H-L, Li C-Y, Zhang B, Liu Y-D, Lu B-M, Shi Z, An N, Zhao L-K, Zhang J-J, Bao J-K, Wang Y (2014) Mangiferin facilitates islet regeneration and β-cell proliferation through upregulation of cell cycle and β-cell regeneration regulators. Int J Mol Sci 15:9016–9035CrossRef
    10.Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973CrossRef
    11.Gertsch J (2011) Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Planta Med 77:1086–1098CrossRef
    12.Herranz-López M, Fernández-Arroyo S, Pérez-Sanchez A, Barrajón-Catalán E, Beltrán-Debón R, Menéndez JA, Alonso-Villaverde C, Segura-Carretero A, Joven J, Micol V (2012) Synergism of plant-derived polyphenols in adipogenesis: perspectives and implications. Phytomedicine 19:253–261CrossRef
    13.Wagner H (2011) Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia 82:34–37CrossRef
    14.Tistaert C, Dejaegher B, Heyden YV (2011) Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Anal Chim Acta 690:148–161CrossRef
    15.De Beer D, Schulze A, Joubert E, de Villiers A, Malherbe C, Stander M (2012) Food ingredient extracts of Cyclopia subternata (honeybush): variation in phenolic composition and antioxidant capacity. Molecules 17:14602–14624CrossRef
    16.Jung UJ, Lee M-K, Jeong K-S, Choi M-S (2004) The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 134:2499–2503
    17.Beelders T, Brand DJ, de Beer D, Malherbe CJ, Mazibuko SE, Muller CJF, Joubert E (2014) Benzophenone C- and O-glucosides from Cyclopia genistoides (honeybush) inhibit mammalian α-glucosidase. J Nat Prod 77:2694–2699CrossRef
    18.Zhang Y, Liu X, Han L, Gao X, Liu E, Wang T (2013) Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem 141:2896–2905CrossRef
    19.Malherbe CJ, Willenburg E, de Beer D, Bonnet SL, van der Westhuizen JH, Joubert E (2014) Iriflophenone-3-C-glucoside from Cyclopia genistoides: isolation and quantitative comparison of antioxidant capacity with mangiferin and isomangiferin using on-line HPLC antioxidant assays. J Chromatogr B 951–952:164–171CrossRef
    20.Deutschländer MS, van de Venter M, Roux S, Louw J, Lall N (2009) Hypoglycaemic activity of four plant extracts traditionally used in South Africa for diabetes. J Ethnopharmacol 124:619–624CrossRef
    21.De Beer D, Malherbe CJ, Beelders T, Willenburg EL, Brand DJ, Joubert E (2015) Isolation of aspalathin and nothofagin from rooibos (Aspalathus linearis) using high-performance countercurrent chromatography: sample loading and compound stability considerations. J Chromatogr A 1381:29–36CrossRef
    22.Tomasi G, van den Berg F, Andersson C (2004) Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J Chemom 18:231–241CrossRef
    23.Eilers PHC (2004) Parametric time warping. Anal Chem 76:404–411CrossRef
    24.Hendriks MMWB, Cruz-Juarez L, Bont DD, Hall RD (2005) Preprocessing and exploratory analysis of chromatographic profiles of plant extracts. Anal Chim Acta 545:53–64CrossRef
    25.Alaerts G, Dejaeghe B, Smeyers-Verbeke J, Vander Heyden Y (2010) Recent developments in chromatographic fingerprints from herbal products: set-up and data analysis. Comb Chem High Throughput Screen 13:900–922CrossRef
    26.Muller CJF, Joubert E, de Beer D, Sanderson M, Malherbe CJ, Fey SJ, Louw J (2012) Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine 20:32–39CrossRef
    27.Schulze AE, de Beer D, de Villiers A, Manley M, Joubert E (2014) Chemometric analysis of chromatographic fingerprints shows potential of Cyclopia maculata (Andrews) Kies for production of standardized extracts with high xanthone content. J Agric Food Chem 62:10542–10551CrossRef
    28.Daszykowski M, Walczak B (2007) Target selection for alignment of chromatographic signals obtained using monochannel detectors. J Chromatogr A 1176:1–11CrossRef
    29.Fang K-T, Liang Y-Z, X-l Y, Chan K, Lu G-H (2006) Critical value determination on similarity of fingerprints. Chemom Intell Lab Syst 82:236–240CrossRef
    30.Gong F, Wang BT, Chau FT, Liang YZ (2005) Data preprocessing for chromatographic fingerprint of herbal medicine with chemometric approaches. Anal Lett 38:2475–2492CrossRef
    31.Shi Y-H, Xie Z-Y, Wang R, Huang S-J, Li Y-M, Wang Z-T (2012) Quantitative and chemical fingerprint analysis for the quality evaluation of Isatis indigotica based on ultra-performance liquid chromatography with photodiode array detector combined with chemometric methods. Int J Mol Sci 13:9035–9050CrossRef
    32.Goodarzi M, Russell PJ, Vander Heyden Y (2013) Similarity analyses of chromatographic herbal fingerprints: a review. Anal Chim Acta 804:16–28CrossRef
    33.Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12(1):43. doi:10.​1186/​2251-6581-12-43 CrossRef
    34.Hu H-G, Wang M-J, Zhao Q-J, Liao H-L, Cai L-Z, Song Y, Zhang J, Yu S-C, Chen W-S, Liu C-M, Wu Q-Y (2007) Synthesis of mangiferin derivatives as protein tyrosine phosphatase 1B inhibitors. Chem Nat Prod 43:663–666
  • 作者单位:Alexandra E. Schulze (1) (2)
    Dalene De Beer (3)
    Sithandiwe E. Mazibuko (4)
    Christo J. F. Muller (4)
    Candice Roux (4)
    Elize L. Willenburg (3)
    Nyemb Nyunaï (4) (5)
    Johan Louw (4)
    Marena Manley (1)
    Elizabeth Joubert (1) (3)

    1. Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
    2. Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
    3. Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
    4. Diabetes Discovery Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505, South Africa
    5. Medical Research Center, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 3805, Yaoundé, Cameroon
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Similarity analysis of the phenolic fingerprints of a large number of aqueous extracts of Cyclopia subternata, obtained by high-performance liquid chromatography (HPLC), was evaluated as a potential tool to screen extracts for relative bioactivity. The assessment was based on the (dis)similarity of their fingerprints to that of a reference active extract of C. subternata, proven to enhance glucose uptake in vitro and in vivo. In vitro testing of extracts, selected as being most similar (n = 5; r ≥ 0.962) and most dissimilar (n = 5; r ≤ 0.688) to the reference active extract, showed that no clear pattern in terms of relative glucose uptake efficacy in C2C12 myocytes emerged, irrespective of the dose. Some of the most dissimilar extracts had higher glucose-lowering activity than the reference active extract. Principal component analysis revealed the major compounds responsible for the most variation within the chromatographic fingerprints, as mangiferin, isomangiferin, iriflophenone-3-C-β-d-glucoside-4-O-β-d-glucoside, iriflophenone-3-C-β-d-glucoside, scolymoside, and phloretin-3′,5′-di-C-β-d-glucoside. Quantitative analysis of the selected extracts showed that the most dissimilar extracts contained the highest mangiferin and isomangiferin levels, whilst the most similar extracts had the highest scolymoside content. These compounds demonstrated similar glucose uptake efficacy in C2C12 myocytes. It can be concluded that (dis)similarity of chromatographic fingerprints of extracts of unknown activity to that of a proven bioactive extract does not necessarily translate to lower or higher bioactivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700