Semi-analytical prediction of Secchi depth using remote-sensing reflectance for lakes with a wide range of turbidity
详细信息    查看全文
文摘
It is crucial to monitor light environments in large lakes using satellite remote-sensing data. Many studies have proposed prediction schemes of transparency information, but most of them were site-specific. Here, we applied semi-analytical retrieval procedures of inherent optical properties from in situ-measured remote-sensing reflectance and then predicted the Secchi depth (SD) using contrast transmittance theory. Two types of water regions (clear or turbid waterbodies) were first classified based on spectral characteristics, and a selection from two retrieval procedures for clear and turbid water bodies was made. The relationship between the SD and the sum of attenuation coefficients (beam and diffuse attenuation coefficients), which arises in contrast transmittance theory, was determined by analyzing the data from the previous research. The predicted SD values were compared with the observed values in 10 Japanese lakes with a wide variety of turbidity (SD 0.4–17 m). Fairly good agreement between the predicted and observed SD values was obtained, indicating the usefulness of this prediction scheme. We then made an accuracy comparison with the results obtained by previous studies, and we discuss the coefficients and the discrepancies between the measured and predicted SD values in addition to the future directions of this approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700