The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression
详细信息    查看全文
  • 作者:Kamille Smidt ; Agnete Larsen ; Andreas Brønden ; Karen S. Sørensen…
  • 关键词:ZNT3 ; SLC30A3 ; ZNT8 ; Localization ; Insulin secretion ; Beta cell survival
  • 刊名:Biometals
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:29
  • 期:2
  • 页码:287-298
  • 全文大小:1,055 KB
  • 参考文献:Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636CrossRef PubMed
    Boquist L, Falkmer S, Havu N, Pihl E (1968) Insulin biosynthesis, storage and secretion. Pancreatic-islet tissue and heavy metals—some ultrastructural and experimental observations. Lakartidningen 65:3603–3607PubMed
    Bozym RA, Chimienti F, Giblin LJ et al (2010) Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med (Maywood) 235:741–750CrossRef
    Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337CrossRef PubMed
    Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A, Seve M (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206CrossRef PubMed
    Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089CrossRef PubMed
    Doering P, Stoltenberg M, Penkowa M, Rungby J, Larsen A, Danscher G (2010) Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 5:e10131CrossRef PubMed PubMedCentral
    Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Some possible zinc–insulin interactions in the pancreatic B-cell. Diabetologia 19:174–182CrossRef PubMed
    Flannick J, Thorleifsson G, Beer NL et al (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46:357–363CrossRef PubMed PubMedCentral
    Fu Y, Tian W, Pratt EB, Dirling LB, Shyng SL, Meshul CK, Cohen DM (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One 4:e5679CrossRef PubMed PubMedCentral
    Fukunaka A, Suzuki T, Kurokawa Y, Yamazaki T, Fujiwara N, Ishihara K, Migaki H, Okumura K, Masuda S, Yamaguchi-Iwai Y, Nagao M, Kambe T (2009) Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J Biol Chem 284:30798–30806CrossRef PubMed PubMedCentral
    Gerber PA, Bellomo EA, Hodson DJ, Meur G, Solomou A, Mitchell RK, Hollinshead M, Chimienti F, Bosco D, Hughes SJ, Johnson PR, Rutter GA (2014) Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn2+ in pancreatic beta cells. Diabetologia 57:1635–1644CrossRef PubMed PubMedCentral
    Gilda JE, Gomes AV (2013) Stain-free total protein staining is a superior loading control to beta-actin for western blots. Anal Biochem 440:186–188CrossRef PubMed
    Gold G, Grodsky GM (1984) Kinetic aspects of compartmental storage and secretion of insulin and zinc. Experientia 40:1105–1114CrossRef PubMed
    Huang L, Kirschke CP, Lay Y-AE, Levy LB, Lamirande DE, Zhang PH (2012) Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. J Biol Chem 287:33883–33896CrossRef PubMed PubMedCentral
    Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 277:19049–19055CrossRef PubMed
    Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van Lommel L, Waelkens E, Chimienti F, Rutter GA, Gilon P, in’t Veld PA, Schuit FC (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877CrossRef PubMed PubMedCentral
    Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083CrossRef PubMed PubMedCentral
    Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181CrossRef PubMed
    Nygaard SB, Larsen A, Knuhtsen A, Rungby J, Smidt K (2014) Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells. BMC Res Notes 7:84CrossRef PubMed PubMedCentral
    Nygaard SB, Lund NS, Larsen A, Pedersen N, Rungby J, Smidt K (2015) Exogenous metallothionein potentiates the insulin response at normal glucose concentrations in INS-1E beta-cells without disturbing intracellular ZnT8 expression. Basic Clin Pharmacol Toxicol 116:173–177CrossRef PubMed
    Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939CrossRef PubMed PubMedCentral
    Patrushev N, Seidel-Rogol B, Salazar G (2012) Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS One 7:e33211CrossRef PubMed PubMedCentral
    Petersen AB, Smidt K, Magnusson NE, Moore F, Egefjord L, Rungby J (2011) siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-1E cells. APMIS 119:93–102CrossRef PubMed
    Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365CrossRef PubMed PubMedCentral
    Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69CrossRef PubMed
    Rungby J (2010) Zinc, zinc transporters and diabetes. Diabetologia 53:1549–1551CrossRef PubMed
    Salazar G, Love R, Werner E, Doucette MM, Cheng S, Levey A, Faundez V (2004) The zinc transporter ZnT3 interacts with AP-3 and it is preferentially targeted to a distinct synaptic vesicle subpopulation. Mol Biol Cell 15:575–587CrossRef PubMed PubMedCentral
    Salazar G, Falcon-Perez JM, Harrison R, Faundez V (2009) SLC30A3 (ZnT3) oligomerization by dityrosine bonds regulates its subcellular localization and metal transport capacity. PLoS One 4:e5896CrossRef PubMed PubMedCentral
    Scott DA, Fisher AM (1938) The insulin and the zinc content of normal and diabetic pancreas. J Clin Investig 17:725–728CrossRef PubMed PubMedCentral
    Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885CrossRef PubMed
    Smidt K, Rungby J (2012) ZnT3: a zinc transporter active in several organs. Biometals 25:1–8CrossRef PubMed
    Smidt K, Wogensen L, Brock B, Schmitz O, Rungby J (2006) Real-time PCR: housekeeping genes in the INS-1E beta-cell line. Horm Metab Res 38:8–11CrossRef PubMed
    Smidt K, Jessen N, Petersen AB et al (2009) SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS One 4:e5684CrossRef PubMed PubMedCentral
    Smidt K, Sørensen K, Larsen A, Prætorius J, Martensen PM, Rungby J (2013) Insulin secretion and ZnT8 gene expression are decreased by ZnT3 overexpression. Diabetologia 56(Suppl 1):A478 (Abstract)
    Søndergaard LG, Brock B, Stoltenberg M, Flyvbjerg A, Schmitz O, Smidt K, Danscher G, Rungby J (2005) Zinc fluxes during acute and chronic exposure of INS-1E cells to increasing glucose levels. Horm Metab Res 37:133–139CrossRef PubMed
    Souza SC, Qiu L, Inouye KE, Roix JJ, Chen H (2008) Zinc transporter ZnT-8 regulates insulin and glucagon secretion in Min6 and aTC1-9 pancreatic cell lines. Diabetologia 51(Suppl 1):A501 (Abstract)
    Suzuki T, Ishihara K, Migaki H, Ishihara K, Nagao M, Yamaguchi-Iwai Y, Kambe T (2005) Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J Biol Chem 280:30956–30962CrossRef PubMed
    Tamaki M, Fujitani Y, Hara A et al (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Investig 123:4513–4524CrossRef PubMed PubMedCentral
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034CrossRef PubMed PubMedCentral
    Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668CrossRef PubMed
  • 作者单位:Kamille Smidt (1) (2)
    Agnete Larsen (1)
    Andreas Brønden (4)
    Karen S. Sørensen (1)
    Julie V. Nielsen (1)
    Jeppe Praetorius (1)
    Pia M. Martensen (3)
    Jørgen Rungby (1) (4) (5)

    1. Department of Biomedicine, Aarhus University, Århus, Denmark
    2. Department of Clinical Medicine, Aarhus University, Palle Juul-Jensen Boulevard 82, 8200, Århus N, Denmark
    4. Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
    3. Department of Molecular Biology and Genetics, Aarhus University, Århus, Denmark
    5. Department of Clinical Pharmacology, Rigshospitalet, Copenhagen, Denmark
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8773
文摘
Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage in the granules whereas ZNT3 knockout negatively affects beta cell function and survival. Here, we describe for the first time the sub-cellular localization of ZNT3 by immuno-gold electron microscopy and supplement previous data from knockout experiments with investigations of the effect of ZNT3 in a pancreatic beta cell line, INS-1E overexpressing ZNT3. In INS-1E cells, we found that ZNT3 was abundant in insulin containing granules located close to the plasma membrane. The level of ZNT8 mRNA was significantly decreased upon over-expression of ZNT3 at different glucose concentrations (5, 11 and 21 mM glucose). ZNT3 over-expression decreased insulin content and insulin secretion whereas ZNT3 over-expression improved the cell survival after 24 h at varying glucose concentrations (5, 11 and 21 mM). Our data suggest that ZNT3 and ZNT8 (known to regulate insulin secretion) have opposite effects on insulin synthesis and secretion possibly by a transcriptional co-regulation since mRNA expression of ZNT3 was inversely correlated to ZNT8 and ZNT3 over-expression reduced insulin synthesis and secretion in INS-1E cells. ZNT3 over-expression improved cell survival.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700