Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies
详细信息    查看全文
  • 作者:Mona Sedeek (1)
    Augusto C. Montezano (1)
    Richard L. Hebert (1)
    Stephen P. Gray (2)
    Elyse Di Marco (2) (3)
    Jay C. Jha (2)
    Mark E. Cooper (2) (3) (4)
    Karin Jandeleit-Dahm (2) (3)
    Ernesto L. Schiffrin (5)
    Jennifer L. Wilkinson-Berka (4)
    Rhian M. Touyz (1) (6)
  • 关键词:Diabetic nephropathy ; Cardiovascular disease ; NADPH oxidase ; Diabetes mellitus ; Nox isoforms
  • 刊名:Journal of Cardiovascular Translational Research
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:5
  • 期:4
  • 页码:509-518
  • 全文大小:312KB
  • 参考文献:1. Emerging Risk Factors Collaboration, Sarwar, N., Gao, P., Seshasai, S. R., Gobin, R., Kaptoge, S., et al. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. / Lancet, 375, 2215-222. <a class="external" href="http://dx.doi.org/10.1016/S0140-6736(10)60484-9">CrossRefa>
    2. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, (2011). Atlanta: Department of Health and Human Services, Centers for Disease Control and Prevention.
    3. Ismail-Beigi, F. (2012). Clinical practice. Glycemic management of type 2 diabetes mellitus. / The New England Journal of Medicine, 366(14), 1319-327. <a class="external" href="http://dx.doi.org/10.1056/NEJMcp1013127">CrossRefa>
    4. Tikellis, C., Pickering, R.J., Tsorotes, D., Du, X.J., Kiriazis, H., Nguyen-Huu, T.P., Head, G.A., Cooper, M.E., Thomas, M.C. (2012) The interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clinical Science (London) [Epub ahead of print].
    5. Huang, A., Yang, Y. M., Feher, A., Bagi, Z., Kaley, G., & Sun, D. (2012). Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. / American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 302(6), R674–R681. <a class="external" href="http://dx.doi.org/10.1152/ajpregu.00699.2011">CrossRefa>
    6. Chang, C.M., Hsieh, C.J., Huang, J.C., Huang, I.C. (2012). Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetologia. 2012 May 1. [Epub ahead of print].
    7. Tang, W. H., Martin, K. A., & Hwa, J. (2012). Aldose reductase, oxidative stress, and diabetic mellitus. / Frontiers in Pharmacology, 3, 87-0. <a class="external" href="http://dx.doi.org/10.3389/fphar.2012.00087">CrossRefa>
    8. Whaley-Connell, A., Sowers, J.R. (2012). Oxidative stress in the cardiorenal metabolic syndrome. Current Hypertension Reports. May 13. [Epub ahead of print].
    9. Coughlan, M. T., Patel, S. K., Jerums, G., Penfold, S. A., Nguyen, T. V., Sourris, K. C., et al. (2011). Advanced glycation urinary protein-bound biomarkers and severity of diabetic nephropathy in man. / American Journal of Nephrology, 34(4), 347-55. <a class="external" href="http://dx.doi.org/10.1159/000331064">CrossRefa>
    10. Jay, D., Hitomi, H., & Griendling, K. K. (2006). Oxidative stress and diabetic cardiovascular complications. / Free Radical Biology & Medicine, 40(2), 183-92. <a class="external" href="http://dx.doi.org/10.1016/j.freeradbiomed.2005.06.018">CrossRefa>
    11. Luther, J. M., & Brown, N. (2011). The renin–angiotensin–aldosterone system and glucose homeostasis. / Trends in Pharmacological Sciences, 32(12), 734-39. <a class="external" href="http://dx.doi.org/10.1016/j.tips.2011.07.006">CrossRefa>
    12. Shen, G. X. (2010). Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. / Canadian Journal of Physiology and Pharmacology, 88(3), 241-48. <a class="external" href="http://dx.doi.org/10.1139/Y10-018">CrossRefa>
    13. Thum, T., Fraccarollo, D., Schultheiss, M., Froese, S., Galuppo, P., Widder, J. D., et al. (2007). Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. / Diabetes, 56(3), 666-74. <a class="external" href="http://dx.doi.org/10.2337/db06-0699">CrossRefa>
    14. Babior, B. M. (2004). NADPH oxidase. / Current Opinion in Immunology, 16(1), 42-7. <a class="external" href="http://dx.doi.org/10.1016/j.coi.2003.12.001">CrossRefa>
    15. Al Ghouleh, I., Khoo, N. K., Knaus, U. G., Griendling, K. K., Touyz, R. M., Thannickal, V. J., et al. (2011). Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. / Free Radical Biology & Medicine, 1, 1271-288. <a class="external" href="http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.011">CrossRefa>
    16. Dworakowski, R., Alom-Ruiz, S. P., & Shah, A. M. (2008). NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. / Pharmacological Reports, 60(1), 21-8.
    17. Sirker, A., Zhang, M., & Shah, A. M. (2011). NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. / Basic Research in Cardiology, 106(5), 735-. <a class="external" href="http://dx.doi.org/10.1007/s00395-011-0190-z">CrossRefa>
    18. Redmond, E. M., & Cahill, P. A. (2012). The NOX–ROS connection: targeting Nox1 control of N-cadherin shedding in vascular smooth muscle cells. / Cardiovascular Research, 93(3), 386-90. <a class="external" href="http://dx.doi.org/10.1093/cvr/cvs020">CrossRefa>
    19. Dikalova, A. E., Góngora, M. C., Harrison, D. G., Lambeth, J. D., Dikalov, S., & Griendling, K. K. (2010). Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. / American Journal of Physiology—Heart and Circulatory Physiology, 299(3), H673–H679. <a class="external" href="http://dx.doi.org/10.1152/ajpheart.00242.2010">CrossRefa>
    20. Bayat, H., Schr?der, K., Pimentel, D. R., Brandes, R. P., Verbeuren, T. J., Cohen, R. A., et al. (2012). Activation of thromboxane receptor modulates interleukin-1β-induced monocyte adhesion—a novel role of Nox1. / Free Radical Biology & Medicine, 52(9), 1760-766. <a class="external" href="http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.052">CrossRefa>
    21. Yogi, A., Mercure, C., Touyz, J., Callera, G. E., Montezano, A. C., Aranha, A. B., et al. (2008). Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. / Hypertension, 51(2), 500-06. <a class="external" href="http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.103192">CrossRefa>
    22. Paik, Y. H., Iwaisako, K., Seki, E., Inokuchi, S., Schnabl, B., Osterreicher, C. H., et al. (2011). The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. / Hepatology, 53(5), 1730-741. <a class="external" href="http://dx.doi.org/10.1002/hep.24281">CrossRefa>
    23. Yasuda, M., Kato, S., Yamanaka, N., Iimori, M., Utsumi, D., Kitahara, Y., et al. (2012). Potential role of the NADPH oxidase NOX1 in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. / American Journal of Physiology—Gastrointestinal and Liver Physiology, 302(10), G1133–G1142. <a class="external" href="http://dx.doi.org/10.1152/ajpgi.00535.2011">CrossRefa>
    24. Sheehan, A. L., Carrell, S., Johnson, B., Stanic, B., Banfi, B., & Miller, F. J., Jr. (2011). Role for Nox1 NADPH oxidase in atherosclerosis. / Atherosclerosis, 216(2), 321-26. <a class="external" href="http://dx.doi.org/10.1016/j.atherosclerosis.2011.02.028">CrossRefa>
    25. Youn, J.Y., Gao, L., Cai, H. (2012). The p47(phox)- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55, 2069-079.
    26. Liu, J., Ormsby, A., Oja-Tebbe, N., & Pagano, P. J. (2004). Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy. / Circulation Research, 95(6), 587-94. <a class="external" href="http://dx.doi.org/10.1161/01.RES.0000142317.88591.e6">CrossRefa>
    27. Touyz, R. M., Mercure, C., He, Y., Javeshghani, D., Yao, G., & Reudelhuber, T. (2005). Angiotensin II-dependent chronic hypertension and cardiac hypertrophy in mice do not require gp91phox-containing NADPH oxidase. / Hypertension, 45, 530-37. <a class="external" href="http://dx.doi.org/10.1161/01.HYP.0000158845.49943.5e">CrossRefa>
    28. Syed, I., Kyathanahalli, C. N., Jayaram, B., Govind, S., Rhodes, C. J., Kowluru, R. A., et al. (2011). Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. / Diabetes, 60(11), 2843-852. <a class="external" href="http://dx.doi.org/10.2337/db11-0809">CrossRefa>
    29. Mukherjea, D., Jajoo, S., Sheehan, K., Kaur, T., Sheth, S., Bunch, J., et al. (2011). NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. / Antioxidants & Redox Signaling, 14(6), 999-010. <a class="external" href="http://dx.doi.org/10.1089/ars.2010.3497">CrossRefa>
    30. Chen, G., Adeyemo, A. A., Zhou, J., Chen, Y., Doumatey, A., Lashley, K., et al. (2007). A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. / American Journal of Kidney Diseases, 49(3), 394-00. <a class="external" href="http://dx.doi.org/10.1053/j.ajkd.2006.12.011">CrossRefa>
    31. Ye, S., Zhong, H., Yanamadala, S., & Campese, V. M. (2006). Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. / Hypertension, 48(2), 309-32. <a class="external" href="http://dx.doi.org/10.1161/01.HYP.0000231307.69761.2e">CrossRefa>
    32. Streeter, J., Thiel, W., Brieger, K., Miller, Jr F. J. (2012). Opportunity Nox: the future of NADPH oxidases as therapeutic targets in cardiovascular disease. Cardiovascular Therapeutics. doi: 10.1111.
    33. Xi, G., Shen, X., Maile, L. A., Wai, C., Gollahon, K., & Clemmons, D. R. (2012). Hyperglycemia enhances IGF-I-stimulated Src activation via increasing Nox4-derived reactive oxygen species in a PKCζ-dependent manner in vascular smooth muscle cells. / Diabetes, 61(1), 104-13. <a class="external" href="http://dx.doi.org/10.2337/db11-0990">CrossRefa>
    34. Fulton, D. J. (2009). Nox5 and the regulation of cellular function. / Antioxidants & Redox Signaling, 11(10), 2443-452. <a class="external" href="http://dx.doi.org/10.1089/ars.2009.2587">CrossRefa>
    35. Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., et al. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. / Circulation Research, 105(3), 249-59. <a class="external" href="http://dx.doi.org/10.1161/CIRCRESAHA.109.193722">CrossRefa>
    36. Martin-Garrido, A., Brown, D. I., Lyle, A. N., Dikalova, A., Seidel-Rogol, B., Lassègue, B., et al. (2011). NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor. / Free Radical Biology & Medicine, 50(2), 354-56. <a class="external" href="http://dx.doi.org/10.1016/j.freeradbiomed.2010.11.007">CrossRefa>
    37. Takac, I., Schr?der, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J. D., et al. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. / Journal of Biological Chemistry, 286(15), 13304-3313. <a class="external" href="http://dx.doi.org/10.1074/jbc.M110.192138">CrossRefa>
    38. Schr?der, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. / Circulation Research, 110, 1217-225. <a class="external" href="http://dx.doi.org/10.1161/CIRCRESAHA.112.267054">CrossRefa>
    39. Zhang, M., Brewer, A. C., Schr?der, K., Santos, C. X., Grieve, D. J., Wang, M., et al. (2010). NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. / Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18121-8126. <a class="external" href="http://dx.doi.org/10.1073/pnas.1009700107">CrossRefa>
    40. Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M. D., & Sadoshima, J. (2010). NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. / Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15565-5570. <a class="external" href="http://dx.doi.org/10.1073/pnas.1002178107">CrossRefa>
    41. Tong, X., Hou, X., Jourd’heuil, D., Weisbrod, R. M., & Cohen, R. A. (2010). Upregulation of Nox4 by TGF{beta}1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic Zucker rat. / Circulation Research, 107, 975-83. <a class="external" href="http://dx.doi.org/10.1161/CIRCRESAHA.110.221242">CrossRefa>
    42. Wu, X., & Williams, K. J. (2012). NOX4 pathway as a source of selective insulin resistance and responsiveness. / Arteriosclerosis, Thrombosis, and Vascular Biology, 32(5), 1236-245. <a class="external" href="http://dx.doi.org/10.1161/ATVBAHA.111.244525">CrossRefa>
    43. Maalouf, R. M., Eid, A. A., Gorin, Y. C., Block, K., Escobar, G. P., Bailey, S., et al. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. / American Journal of Physiology. Cell Physiology, 302(3), C597–C604. <a class="external" href="http://dx.doi.org/10.1152/ajpcell.00331.2011">CrossRefa>
    44. Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M., & Angielski, S. (2011). High glucose concentration affects the oxidant–antioxidant balance in cultured mouse podocytes. / Journal of Cellular Biochemistry, 112(6), 1661-672. <a class="external" href="http://dx.doi.org/10.1002/jcb.23088">CrossRefa>
    45. Sedeek, M., Callera, G., Montezano, A., Gutsol, A., Heitz, F., Szyndralewiez, C., et al. (2010). Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. / American Journal of Physiology. Renal Physiology, 299(6), F1348–F1358. <a class="external" href="http://dx.doi.org/10.1152/ajprenal.00028.2010">CrossRefa>
    46. Montezano, A. C., Buger, D., Ceravolo, G. S., Yusuf, H., Montero, M., & Touyz, R. M. (2011). Novel Noxes homologues in the vasculature: focusing on Nox4 and Nox5. / Clinical Science, 120(4), 131-41. <a class="external" href="http://dx.doi.org/10.1042/CS20100384">CrossRefa>
    47. Pandey, D., & Fulton, D. J. (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. / American Journal of Physiology—Heart and Circulatory Physiology, 300(4), H1336-. <a class="external" href="http://dx.doi.org/10.1152/ajpheart.01163.2010">CrossRefa>
    48. Manea, A., Manea, S. A., Florea, I. C., Luca, C. M., & Raicu, M. (2012). Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells. / Free Radical Biology & Medicine, 52(9), 1497-507. <a class="external" href="http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.018">CrossRefa>
    49. Hahn, N. E., Meischl, C., Kawahara, T., Musters, R. J., Verhoef, V. M., van der Velden, J., et al. (2012). NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans. / American Journal of Pathology, 180(6), 2222-229. <a class="external" href="http://dx.doi.org/10.1016/j.ajpath.2012.02.018">CrossRefa>
    50. Pandey, D., Patel, A., Patel, V., Chen, F., Qian, J., Wang, Y., Barman, S.A., Venema, R.C., Stepp, D.W., Rudic, R.D., Fulton, D.J. (2012). Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels. / American Journal of Physiology—Heart and CirculatoryPhysiology, 302(10), H1919-8.
    51. Bhavani, N. (2011). Transient congenital hypothyroidism. / Indian Journal of Endocrinology and Metabolism, 15(Suppl 2), S117–S120. <a class="external" href="http://dx.doi.org/10.4103/2230-8210.83345">CrossRefa>
    52. Cooper, M. E. (1998). Pathogenesis, prevention, and treatment of diabetic nephropathy. / Lancet, 352(9123), 213-19. <a class="external" href="http://dx.doi.org/10.1016/S0140-6736(98)01346-4">CrossRefa>
    53. Forbes, J. M., Coughlan, M. T., & Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. / Diabetes, 57(6), 1446-454. <a class="external" href="http://dx.doi.org/10.2337/db08-0057">CrossRefa>
    54. Eid, A. A., Gorin, Y., Faff, B. M., Maalouf, R., Barnes, J. L., Block, K., et al. (2009). Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. / Diabetes, 58(5), 1201-211. <a class="external" href="http://dx.doi.org/10.2337/db08-1536">CrossRefa>
    55. Etoh, T., Inoguchi, T., Kakimoto, M., Sonoda, N., Kobayashi, K., Kuroda, J., et al. (2003). Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibility by interventive insulin treatment. / Diabetologia, 46(10), 1428-437. <a class="external" href="http://dx.doi.org/10.1007/s00125-003-1205-6">CrossRefa>
    56. Asaba, K., Tojo, A., Onozato, M. L., Goto, A., Quinn, M. T., Fujita, T., et al. (2005). Effects of NADPH oxidase inhibitor in diabetic nephropathy. / Kidney International, 67(5), 1890-898. <a class="external" href="http://dx.doi.org/10.1111/j.1523-1755.2005.00287.x">CrossRefa>
    57. Kitada, M., Koya, D., Sugimoto, T., Isono, M., Araki, S., Kashiwagi, A., et al. (2003). Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. / Diabetes, 52(10), 2603-614. <a class="external" href="http://dx.doi.org/10.2337/diabetes.52.10.2603">CrossRefa>
    58. Ohshiro, Y., Ma, R. C., Yasuda, Y., Hiraoka-Yamamoto, J., Clermont, A. C., Isshiki, K., et al. (2006). Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. / Diabetes, 55(11), 3112-120. <a class="external" href="http://dx.doi.org/10.2337/db06-0895">CrossRefa>
    59. Cai, W., Torreggiani, M., Zhu, L., Chen, X., He, J. C., Striker, G. E., et al. (2010). AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. / American Journal of Physiology. Cell Physiology, 298(3), C624–C634. <a class="external" href="http://dx.doi.org/10.1152/ajpcell.00463.2009">CrossRefa>
    60. Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. / Journal of the American Society of Nephrology, 14(8 Suppl 3), S241–S245. <a class="external" href="http://dx.doi.org/10.1097/01.ASN.0000077410.66390.0F">CrossRefa>
    61. Gorin, Y., Ricono, J. M., Kim, N. H., Bhandari, B., Choudhury, G. G., & Abboud, H. E. (2003). Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. / American Journal of Physiology. Renal Physiology, 285(2), F219–F229.
    62. Nava, M., Quiroz, Y., Vaziri, N., & Rodriguez-Iturbe, B. (2003). Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. / American Journal of Physiology. Renal Physiology, 284(3), F447–F454.
    63. Ha, H., Yu, M. R., Choi, Y. J., Kitamura, M., & Lee, H. B. (2002). Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. / Journal of the American Society of Nephrology, 13(4), 894-02.
    64. Weigert, C., Sauer, U., Brodbeck, K., Pfeiffer, A., H?ring, H. U., & Schleicher, E. D. (2000). AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. / Journal of the American Society of Nephrology, 11(11), 2007-016.
    65. Kim, N. H., Rincon-Choles, H., Bhandari, B., Choudhury, G. G., Abboud, H. E., & Gorin, Y. (2006). Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. / American Journal of Physiology. Renal Physiology, 290(3), F741–F751. <a class="external" href="http://dx.doi.org/10.1152/ajprenal.00313.2005">CrossRefa>
    66. Susztak, K., Raff, A. C., Schiffer, M., & B?ttinger, E. P. (2006). Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. / Diabetes, 55(1), 225-33. <a class="external" href="http://dx.doi.org/10.2337/diabetes.55.01.06.db05-0894">CrossRefa>
    67. Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., Wong, T. Y., & Meta-Analysis for Eye Disease (META-EYE) Study Group. (2012). Global prevalence and major risk factors of diabetic retinopathy. / Diabetes Care, 35(3), 556-64. <a class="external" href="http://dx.doi.org/10.2337/dc11-1909">CrossRefa>
    68. Wilkinson, C. P., Ferris, F. L., 3rd, Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., et al. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. / Ophthalmology, 110, 1677-682. <a class="external" href="http://dx.doi.org/10.1016/S0161-6420(03)00475-5">CrossRefa>
    69. Arden, G. B., & Sivaprasad, S. (2011). Hypoxia and oxidative stress in the causation of diabetic retinopathy. / Current Diabetes Reviews, 7, 291-04.
    70. Al-Shabrawey, M., Bartoli, M., El-Remessy, A. B., Ma, G., Matragoon, S., Lemtalsi, T., et al. (2008). Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. / Investigative Ophthalmology and Visual Science, 49, 3231-238. <a class="external" href="http://dx.doi.org/10.1167/iovs.08-1754">CrossRefa>
    71. Li, J., Wang, J. J., Yu, Q., Chen, K., Mahadev, K., & Zhang, S. X. (2010). Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood–retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. / Diabetes, 59, 1528-538. <a class="external" href="http://dx.doi.org/10.2337/db09-1057">CrossRefa>
    72. Dvoriantchikova et al. (2012) Neuronal NAD(P)H oxidases contribute to ROS production and mediate RGC death after ischemia. Investigative Ophthalmology & Visual Science 53, 2823-830.
    73. Bhatt, L., Groeger, G., McDermott, K., & Cotter, T. G. (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. / Molecular Vision, 16, 283-93.
    74. Yokota, H., Narayanan, S. P., Zhang, W., Liu, H., Rojas, M., Xu, Z., et al. (2011). Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. / Investigative Ophthalmology and Visual Science, 52(11), 8123-131. <a class="external" href="http://dx.doi.org/10.1167/iovs.11-8318">CrossRefa>
    75. Tang, J., & Kern, T. S. (2011). Inflammation in diabetic retinopathy. / Progress in Retinal and Eye Research, 30, 343-58. <a class="external" href="http://dx.doi.org/10.1016/j.preteyeres.2011.05.002">CrossRefa>
    76. Tarr, J. M., Ding, N., Kaul, K., Antonell, A., Perez-Jurado, L. A., & Chibber, R. (2012). Cellular crosstalk between TNF-alpha, NADPH oxidase, PKCbeta2, and C2GNT in human leukocytes. / Cellular Signalling, 24, 873-78. <a class="external" href="http://dx.doi.org/10.1016/j.cellsig.2011.12.003">CrossRefa>
    77. Chen, P., Guo, A. M., Edwards, P. A., Trick, G., & Scicli, A. G. (2007). Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. / American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 293, R1619–R1629. <a class="external" href="http://dx.doi.org/10.1152/ajpregu.00290.2007">CrossRefa>
    78. Garrido-Urbani, S., Jemelin, S., Deffert, C., Carnesecchi, S., Basset, O., Szyndralewiez, C., et al. (2011). Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. / PLoS One, 6, e14665. <a class="external" href="http://dx.doi.org/10.1371/journal.pone.0014665">CrossRefa>
    79. Arbiser, J. L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E. R., Brown, L. F., et al. (2002). Reactive oxygen generated by Nox1 triggers the angiogenic switch. / Proceedings of the National Academy of Sciences of the United States of America, 99, 715-20. <a class="external" href="http://dx.doi.org/10.1073/pnas.022630199">CrossRefa>
    80. Saito, Y., Geisen, P., Uppal, A., & Hartnett, M. E. (2007). Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. / Molecular Vision, 13, 840-53.
    81. Al-Shabrawey, M., Rojas, M., Sanders, T., Behzadian, A., El-Remessy, A., Bartoli, M., et al. (2008). Role of NADPH oxidase in retinal vascular inflammation. / Investigative Ophthalmology and Visual Science, 49, 3239-244. <a class="external" href="http://dx.doi.org/10.1167/iovs.08-1755">CrossRefa>
    82. Zhang, W., Rojas, M., Lilly, B., Tsai, N. T., Lemtalsi, T., Liou, G. I., et al. (2009). NAD(P)H oxidase-dependent regulation of CCL2 production during retinal inflammation. / Investigative Ophthalmology and Visual Science, 50, 3033-040. <a class="external" href="http://dx.doi.org/10.1167/iovs.08-2676">CrossRefa>
    83. Tawfik, A., Sanders, T., Kahook, K., AkeeL, S., Elmarakby, A., & Al-Shabrawey, M. (2009). Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. / Investigative Ophthalmology and Visual Science, 50, 878-84. <a class="external" href="http://dx.doi.org/10.1167/iovs.08-2005">CrossRefa>
    84. Wilkinson-Berka, J. L., Heine, R., Tan, G., Cooper, M. E., Hatzopoulos, K. M., Fletcher, E. L., et al. (2010). RILLKKMPSV influences the vasculature, neurons and glia, and (pro)renin receptor expression in the retina. / Hypertension, 55, 1454-460. <a class="external" href="http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.148221">CrossRefa>
    85. Sarlos, S., & Wilkinson-Berka, J. L. (2005). The renin–angiotensin system and the developing retinal vasculature. / Investigative Ophthalmology and Visual Science, 46, 1069-077. <a class="external" href="http://dx.doi.org/10.1167/iovs.04-0885">CrossRefa>
    86. Wilkinson-Berka, J. L. (2006). Angiotensin and diabetic retinopathy. / The International Journal of Biochemistry & Cell Biology, 38, 752-65. <a class="external" href="http://dx.doi.org/10.1016/j.biocel.2005.08.002">CrossRefa>
    87. Fukumoto, M., Takai, S., Ishizaki, E., Sugiyama, T., Oku, H., Jin, D., et al. (2008). Involvement of angiotensin II-dependent vascular endothelial growth factor gene expression via NADPH oxidase in the retina in a type 2 diabetic rat model. / Current Eye Research, 33, 885-91. <a class="external" href="http://dx.doi.org/10.1080/02713680802389851">CrossRefa>
    88. Li, L., & Renier, G. (2006). Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. / Metabolism, 55, 1516-523. <a class="external" href="http://dx.doi.org/10.1016/j.metabol.2006.06.022">CrossRefa>
    89. Yamagishi, S., Nakamura, K., Matsui, T., Inagaki, Y., Takenaka, K., Jinnouchi, Y., et al. (2006). Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. / Journal of Biological Chemistry, 281(29), 20213-0220. <a class="external" href="http://dx.doi.org/10.1074/jbc.M602110200">CrossRefa>
    90. Miller, A. G., Tan, G., Binger, K. J., Pickering, R. J., Thomas, M. C., Nagaraj, R. H., et al. (2010). Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. / Diabetes, 59, 3208-215. <a class="external" href="http://dx.doi.org/10.2337/db10-0552">CrossRefa>
    91. Barry-Lane, P. A., Patterson, C., Van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T. H., et al. (2001). p47phox is required for atherosclerotic lesion progression in ApoEass="a-plus-plus">??/sup> mice. / Journal of Clinical Investigation, 108, 1513-522.
    92. Judkins, C. P., Diep, H., Broughton, B. R. S., Mast, A. E., Hooker, E. U., Miller, A. A., et al. (2010). Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoEass="a-plus-plus">??/sup> mice. / American Journal of Physiology—Heart and Circulatory Physiology, 298, H24–H32. <a class="external" href="http://dx.doi.org/10.1152/ajpheart.00799.2009">CrossRefa>
    93. Dikalova, A., Clempus, R., Lassegue, B., Cheng, G., Mccoy, J., Dikalov, S., et al. (2005). Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. / Circulation, 112, 2668-676. <a class="external" href="http://dx.doi.org/10.1161/CIRCULATIONAHA.105.538934">CrossRefa>
    94. Shimizu, H., Nakagawa, Y., Murakami, C., Aoki, N., Kim-Mitsuyama, S., & Miyazaki, H. (2010). Protein tyrosine phosphatase PTPepsilonM negatively regulates PDGF beta-receptor signaling induced by high glucose and PDGF in vascular smooth muscle cells. / American Journal of Physiology. Cell Physiology, 299(5), C1144–C1145. <a class="external" href="http://dx.doi.org/10.1152/ajpcell.00536.2009">CrossRefa>
    95. Perrotta, I., Sciangula, A., Perrotta, E., Donato, G., & Cassese, M. (2011). Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta. / Ultrastructural Pathology, 35(1), 1-. <a class="external" href="http://dx.doi.org/10.3109/01913123.2010.510261">CrossRefa>
    96. Fenyo, I. M., Florea, I. C., Raicu, M., & Manea, A. (2011). Tyrphostin AG490 reduces NAPDH oxidase activity and expression in the aorta of hypercholesterolemic apolipoprotein E-deficient mice. / Vascular Pharmacology, 54(3-6), 100-06. <a class="external" href="http://dx.doi.org/10.1016/j.vph.2011.03.006">CrossRefa>
    97. Lassègue, B., & Griendling, K. K. (2010). NADPH oxidases: functions and pathologies in the vasculature. / Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 653-61. <a class="external" href="http://dx.doi.org/10.1161/ATVBAHA.108.181610">CrossRefa>
    98. Matsuno, K., Yamada, H., Iwata, K., Jin, D., Katsuyama, M., Matsuki, M., et al. (2005). Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. / Circulation, 112, 2677-685. <a class="external" href="http://dx.doi.org/10.1161/CIRCULATIONAHA.105.573709">CrossRefa>
    99. Hart, B. A., Elferink, J. G., & Nibbering, P. H. (1992). Effect of apocynin on the induction of ulcerative lesions in rat skin injected with tubercle bacteria. / International Journal of Immunopharmacology, 14(6), 953-61. <a class="external" href="http://dx.doi.org/10.1016/0192-0561(92)90138-B">CrossRefa>
    100. Gatley, S. J., & Sherratt, H. A. S. (1976). The effects of diphenyleneiodonium on mitochondrial reactions. Relation of binding of diphenylene[ass="a-plus-plus">125I]iodonium to mitochondria to the extent of inhibition of oxygen uptake. / Biochemical Journal, 158, 307-15.
    101. Aldieri, E., Riganti, C., Polimeni, M., Gazzano, E., Lussiana, C., Campia, I., et al. (2008). Classical inhibitors of NOX NAD(P)H oxidases are not specific. / Current Drug Metabolism, 9, 686-96. <a class="external" href="http://dx.doi.org/10.2174/138920008786049285">CrossRefa>
    102. Wind, S., Beuerlein, D., Eucker, T., Müller, H., Scheurer, P., Armitage, M. E., et al. (2010). Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. / British Journal of Pharmacology, 161, 885-98. <a class="external" href="http://dx.doi.org/10.1111/j.1476-5381.2010.00920.x">CrossRefa>
    103. Drummond, G. R., Selemidis, S., Griendling, K. K., & Sobey, C. G. (2011). Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. / Nature Reviews. Drug Discovery, 10(6), 453-57. <a class="external" href="http://dx.doi.org/10.1038/nrd3403">CrossRefa>
    104. Kim, J. A., Neupane, G. P., Lee, E. S., Jeong, B. S., Park, B. C., & Thapa, P. (2011). NADPH oxidase inhibitors: a patent review. / Expert Opinion on Therapeutic Patents, 21(8), 1147-158. <a class="external" href="http://dx.doi.org/10.1517/13543776.2011.584870">CrossRefa>
    105. <a href="http://www.genkyotex.com/cdpdf/1320395578_GenKyoTex_Phase_I_Release_31-10-11.pdf" class="a-plus-plus">http://www.genkyotex.com/cdpdf/1320395578_GenKyoTex_Phase_I_Release_31-10-11.pdfa>.
    106. Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, I., Cagnon, I., Houngninou-Molango, S., et al. (2010). First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. / Journal of Medicinal Chemistry, 53, 7715-730. <a class="external" href="http://dx.doi.org/10.1021/jm100773e">CrossRefa>
    107. Page, P., Orchard, M., Fioraso-Cartier, l., Mottironi, B. (2008). Pyrazolo pyridine derivatives as NADPH oxidase inhibitors, Patent WO 2008/113856 A1. Switzerland patent application.
    108. Stielow, C., Catar, R. A., Muller, G., Wingler, K., Scheurer, P., Schmidt, H. H. H. W., et al. (2006). Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. / Biochemical and Biophysical Research Communications, 344, 200-05. <a class="external" href="http://dx.doi.org/10.1016/j.bbrc.2006.03.114">CrossRefa>
    109. Ten Freyhaus, H., Huntgeburth, M., Wingler, K., Schnitker, J., B?umer, A. T., Vantler, M., et al. (2006). Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. / Cardiovascular Research, 71, 331-41. <a class="external" href="http://dx.doi.org/10.1016/j.cardiores.2006.01.022">CrossRefa>
    110. Niethammer, P., Grabher, C., Look, A. T., & Mitchison, T. J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. / Nature, 459, 996-99. <a class="external" href="http://dx.doi.org/10.1038/nature08119">CrossRefa>
    111. Spychalowicz, A., Wilk, G., Sliwa, T., Ludew, D., Guzik, T.J. (2012). Novel therapeutic approaches in limiting oxidative stress and inflammation. Current Pharmaceutical Biotechnology. [Epub ahead of print].
    112. Bonner, M.Y., Arbiser, J.L., Targeting, N.A.D.P.H. (2012 May 13). oxidases for the treatment of cancer and inflammation. Cellular and Molecular Life Sciences. [Epub ahead of print].
  • 作者单位:Mona Sedeek (1)
    Augusto C. Montezano (1)
    Richard L. Hebert (1)
    Stephen P. Gray (2)
    Elyse Di Marco (2) (3)
    Jay C. Jha (2)
    Mark E. Cooper (2) (3) (4)
    Karin Jandeleit-Dahm (2) (3)
    Ernesto L. Schiffrin (5)
    Jennifer L. Wilkinson-Berka (4)
    Rhian M. Touyz (1) (6)

    1. Ottawa Hospital Research Institute, Ottawa, Canada
    2. Baker IDI Heart & Diabetes Research Institute, Melbourne, VIC, Australia
    3. Department of Medicine, Monash University, Melbourne, VIC, Australia
    4. Department of Immunology, Monash University, Melbourne, VIC, Australia
    5. Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Canada
    6. Institute for Cardiovascular and Medical sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
  • ISSN:1937-5395
文摘
Most diabetes-related complications and causes of death arise from cardiovascular disease and end-stage renal disease. Amongst the major complications of diabetes mellitus are retinopathy, neuropathy, nephropathy and accelerated atherosclerosis. Increased bioavailability of reactive oxygen species (ROS) (termed oxidative stress), derived in large part from the NADPH oxidase (Nox) family of free radical producing enzymes, has been demonstrated in experimental and clinical diabetes and has been implicated in the cardiovascular and renal complications of diabetes. The present review focuses on the role of Noxs and oxidative stress in some major complications of diabetes, including nephropathy, retinopathy and atherosclerosis. We also discuss Nox isoforms as potential targets for therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700