Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti
详细信息    查看全文
  • 作者:R. Saratha ; Nisha Mathew
  • 关键词:Mosquito ; Attractant ; Aedes aegypti ; Host seeking ; Olfaction
  • 刊名:Parasitology Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:115
  • 期:4
  • 页码:1529-1536
  • 全文大小:468 KB
  • 参考文献:Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA (2000) Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compound that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal Chem 72:747–756CrossRef PubMed
    Bernier UR, Kline DL, Schreck CE, Yost RA, Barnard DR (2002) Chemical analysis of human skin emanations: composition of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J Am Mosq Control Assoc 18:186–195PubMed
    Bernier UR, Kline DL, Posey KH, Booth MM, Yost RA, Barnard DR (2003) Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. J Med Entomol 40:653–656CrossRef PubMed
    Beroza M, Green N (1963) Materials tested as insect attractants, Agricultural hand book no. 239, US Dept of Agriculture, p 1–151
    Bosch OJ, Geier M, Boeckh J (1999) Ammonia as an active component of host odour for the yellow fever mosquito, Aedes aegypti. Chem Senses 24:647–653CrossRef PubMed
    Bosch OJ, Geier M, Boeckh J (2000) Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem Senses 26(3):323–333CrossRef
    Carlson DA, Smith N, Gouck HK, Godwin DR (1973) Yellow fever mosquitoes: compounds related to lactic acid that attract females. J Econ Entomol 66:269–276CrossRef
    El-Sayed A, Bengtsson M, Rauscher S, Lofvist J (1999) Multicomponent sex pheromone in codling moth (Lepidoptera: Tortricidae). Environ Entomol 28:775–779CrossRef
    Englbrecht C, Gordon S, Venturelli C, Rose A, Geier M (2015) Evaluation of BG-sentinel trap as a management tool to reduce Aedes albopictus nuisance in an urban environment in Italy. J Am Mosq Control Assoc 31(1):16–25CrossRef PubMed
    Essen PV, Kemme J, Ritchie S, Kay B (1994) Differential responses of Aedes and Culex mosquitoes to octenol or light in combination with carbon dioxide in Queensland, Australia. Med Vet Entomol 8(1):63–67CrossRef PubMed
    Focks DA (2003) A review of entomological sampling methods and indicators for dengue vectors. TDR WHO, Geneva
    Geier M, Boeckh J (1999) A new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomol Exp Appl 92:9–19CrossRef
    Geier M, Bosch OJ, Boeckh J (1999) Influence of odour plume structure on upwind flight of mosquitoes towards hosts. J Exp Biol 202:1639–1648PubMed
    Geier M, Rose A, Grunewald J, Jones O (2006) New mosquito traps improve the monitoring of disease vectors. Int Pest Control 48:124–126
    Gillies MT (1980) The role of carbon dioxide in host-feeding by mosquitoes (Diptera: Culicidae). Bull Entomol Res 70:525–532CrossRef
    Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, Sardelis MR, Roberts DR (2007) A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS One 2(1):e716CrossRef PubMed PubMedCentral
    Gubler DJ (1998) Resurgent vector borne diseases as a global health problem. Emerg Infect Dis 4:1–9CrossRef
    Guha L, Seenivasagan T, Bandyopadhyay P, Thanvir Iqbal S, Sathe M, Sharma P, Parashar BD, Kaushik MP (2012) Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters. Parasitol Res 111(3):975–982CrossRef PubMed
    Hall DR, Beevor PS, Cork A, Nesbitt BF, Vale GA (1984) 1-Octen-3-ol, a potent olfactory stimulant and attractant for tsetse isolated from cattle odours. Insect Sci Appl 5:33–339
    Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160CrossRef PubMed
    Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A 108:8821–8825CrossRef PubMed PubMedCentral
    Kellog FE (1970) Water vapor and CO2 receptors in Aedes aegypti (L.). J Insect Physiol 16:99–108CrossRef
    Khalequzzaman M, Ara H, Zrhura F, Nahar J (2002) Toxic, repellent and attractant properties of some insecticides towards the housefly (Musca domestica L). Online J Biol Sci 2(10):672–676CrossRef
    Knols BGJ, Van Loon JJA, Cork A, Robinson RD, Meijerink J, De Jong R, Takken W (1997) Behavioral and electrophysiological responses of female malaria mosquito Anopheles gambiae (Diptera: Culicidae) to Limburger cheese volatiles. Bull Entomol Res 87:151–159CrossRef
    Ma M, Shepherd GM (2000) Functional mosaic organization of mouse olfactory receptor neurons. Proc Natl Acad Sci U S A 97:12869–12874CrossRef PubMed PubMedCentral
    Meijerink J, van Loon JJA (1999) Sensitivities of antennal olfactory neurons of the malaria mosquito, Anopheles gambiae, to carboxylic acids. J Insect Physiol 45:365–373CrossRef PubMed
    Mukabana WR, Takken W, Coe R, Knols BGJ (2002) Host-specific cues cause differential attractiveness of Kenyan men to the African malaria vector Anopheles gambiae. Malar J 1:17CrossRef PubMed PubMedCentral
    Nisha M, Elango A, Sabesan S, Kalyanasundaram M (2013) Mosquito attractant blends to trap host seeking Aedes aegypti. Parasitol Res 112:1305–1312CrossRef
    Pascual-Villalobs MJ, Robledo A (1998) Screening for anti-insect activity in Mediterranean plants. Indian Crop Prod 8:183–194CrossRef
    Pitts RJ, Fox AN, Zwiebel LJ (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 101(14):5058–5063CrossRef PubMed PubMedCentral
    Potter CJ (2014) Stop the biting: targeting a mosquito’s sense of smell. Cell 156(5):878–881CrossRef PubMed
    Qiu YT, Smallegange RC, Van Loon JJA, Ter Braak CJ, Takken W (2006) Inter individual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s. s. Med Vet Entomol 20:280–287CrossRef PubMed
    Seenivasagan T, Kavita RS, Sekhar K, Ganesan K, Shri P, Vijayaraghavan R (2009) Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res 104(4):827–833CrossRef PubMed
    Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agarwal OP, Malhotra RC, Prakash S (2008) Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitol Res 103:1065–1073CrossRef PubMed
    Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agarwal OP, Prakash S (2009) Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters. Parasitol Res 104:281–286CrossRef PubMed
    Shirai Y, Tsuda T, Kitagawa S, Naitoh K, Seki T, Kamimura K, Morohashp M (2002) Alcohol ingestion stimulates mosquito attraction. J Am Mosq Control Assoc 18(2):91–96PubMed
    Steib BM, Geier M, Boeckh J (2001) The effect of lactic acid on odour related host preference of yellow fever mosquitoes. Chem Senses 26:523–528CrossRef PubMed
    Takken W (1991) The role of olfaction in host-seeking of mosquitoes: a review. Insect Sci Appl 12:287–295
    Takken W, Knols BG (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44:131–157CrossRef PubMed
    Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A (2013) Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155:1365–1379CrossRef PubMed PubMedCentral
    Turner SL, Li N, Guda T, Githure J, Cardé RT, Ray A (2011) Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474:87–91CrossRef PubMed PubMedCentral
    Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282CrossRef PubMed
  • 作者单位:R. Saratha (1)
    Nisha Mathew (1)

    1. Vector Control Research Centre (ICMR), Indira Nagar, Pondicherry, 605006, India
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Medical Microbiology
    Microbiology
    Immunology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1955
文摘
A mosquito’s dependence on olfaction in the hunt for human host could be efficiently exploited to protect humans from mosquito bites. The present study is undertaken to make the most attractant compound blend for Aedes aegypti mosquitoes to lure them to traps. Eleven molecules (M1–M11) at different dilutions were screened for attractancy against non-blood-fed adult female mosquitoes in an olfactometer. The results showed that the attractancy was dependent on both the chemical nature of the molecule and the strength of the odor. Out of 11 molecules screened, 9 showed significant attractancy (P < 0.05) when tested individually. The attractancy was in the order of M11 > M7 > M6 > M10 > M9 > M3 > M2 > M1 > M4 with attractancy indices (AIs) 86.11, 55.93, 55.17, 54, 52.94, 52, 50, 43.64, and 32, respectively, at the optimum dilutions. Seven blends (I–VII) were made and were screened for attractancy against Ae. aegypti. All the blends showed significant attractancy (P < 0.05). The attractancy was in the order of blend VII > III > IV > I > VI > V > II with AIs 96.63, 89.19, 65, 57.89, 56.1, 47.13, and 44.44, respectively. Among the seven blends, blend VII with constituent molecules M6, M9, M10, and M11 is the most promising with an AI value of 96.63. This blend will be useful in luring the host-seeking mosquitoes to traps. The field efficacy of these attractant blends may be explored in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700