A Single Fluorescent Sensor for Hg2+ and Discriminately Detection of Cr3+ and Cr(VI)
详细信息    查看全文
  • 作者:Jafar Afshani ; Alireza Badiei ; Mehdi Karimi ; Negar Lashgari…
  • 关键词:Fluorescent sensor ; Iminocrown ether ; Mercury ; Chromium
  • 刊名:Journal of Fluorescence
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:263-270
  • 全文大小:2,588 KB
  • 参考文献:1.Sigel H (1983) Metal ions in biological systems: volume 15: zinc and its role in biology and nutrition, vol 15. CRC press, Boca Raton
    2.Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418CrossRef
    3.Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Review: environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175PubMed CrossRef
    4.Zhang Z, Wu D, Guo X, Qian X, Lu Z, Xu Q, Yang Y, Duan L, He Y, Feng Z (2005) Visible study of mercuric ion and its conjugate in living cells of mammals and plants. Chem Res Toxicol 18(12):1814–1820PubMed CrossRef
    5.Nolan EM, Lippard SJ (2003) A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J Am Chem Soc 125(47):14270–14271PubMed CrossRef
    6.Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107(2):641–662PubMed CrossRef
    7.Prasad MNV (2008) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, HobokenCrossRef
    8.McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109(10):4780–4827PubMed CrossRef
    9.Seiler HG, Sigel H, Sigel A (1988) Handbook on toxicity of inorganic compounds. Marcel Dekker, New York
    10.Plunkett ER (1976) Handbook of industrial toxicology. Chemical Publishing Company, Inc., New York
    11.Lippard S, Berg J (1994) Principle of bioinorganic chemistry. University Science Books, Mill Valley
    12.Costa M (1997) Toxicity and carcinogenicity of Cr (VI) in animal models and humans. Crit Rev Toxicol 27(5):431–442PubMed CrossRef
    13.Hatch WR, Ott WL (1968) Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal Chem 40(14):2085–2087CrossRef
    14.Paleologos EK, Stalikas CD, Tzouwara-Karayanni SM, Pilidis GA, Karayannis MI (2000) Micelle-mediated methodology for speciation of chromium by flame atomic absorption spectrometry. J Anal Atom Spectrom 15(3):287–291CrossRef
    15.Shum SC, Pang HM, Houk R (1992) Speciation of mercury and lead compounds by microbore column liquid chromatography-inductively coupled plasma mass spectrometry with direct injection nebulization. Anal Chem 64(20):2444–2450PubMed CrossRef
    16.Hirata S, Honda K, Shikino O, Maekawa N, Aihara M (2000) Determination of chromium (III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Spectrochim Acta B 55(7):1089–1099CrossRef
    17.Bonfil Y, Brand M, Kirowa-Eisner E (2000) Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal Chim Acta 424(1):65–76CrossRef
    18.Boussemart M, van den Berg CM, Ghaddaf M (1992) The determination of the chromium speciation in sea water using catalytic cathodic stripping voltammetry. Anal Chim Acta 262(1):103–115CrossRef
    19.Zhang G, Lu B, Wen Y, Lu L, Xu J (2012) Facile fabrication of a cost-effective, water-soluble, and electrosynthesized poly (9-aminofluorene) fluorescent sensor for the selective and sensitive detection of Fe (III) and inorganic phosphates. Sensors Actuators B Chem 171:786–794CrossRef
    20.Lu L-M, Zhang X-B, Kong R-M, Yang B, Tan W (2011) A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal. J Am Chem Soc 133(30):11686–11691PubMed CrossRef
    21.Jiang X-J, Wong C-L, Lo P-C, Ng DK (2012) A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg2+ ions. Dalton Trans 41(6):1801–1807PubMed CrossRef
    22.Panda S, Pati PB, Zade SS (2011) Twisting (conformational changes)-based selective 2D chalcogeno podand fluorescent probes for Cr (III) and Fe (II). Chem Commun 47(14):4174–4176CrossRef
    23.Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z (2013) On–off–on fluorescent carbon dot nanosensor for recognition of chromium (VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces 5(24):13242–13247PubMed CrossRef
    24.Zarabadi-Poor P, Badiei A, Yousefi AA, Barroso-Flores J (2013) Selective optical sensing of Hg (II) in aqueous media by H-acid/SBA-15: a combined experimental and theoretical study. J Phys Chem C 117(18):9281–9289CrossRef
    25.Zhang Z, Sha C, Liu A, Zhang Z, Xu D (2015) Highly selective detection of Cr (VI) in water matrix by a simple 1,8-naphthalimide-based turn-on fluorescent sensor. J Fluoresc 25(2):335–340PubMed CrossRef
    26.Obali AY, Ucan HI (2012) Aromatic chromophore-tethered Schiff base ligands and their iron (III)/chromium (III) salen and saloph capped complexes. J Fluoresc 22(5):1357–1370PubMed CrossRef
    27.Karak D, Banerjee A, Sahana A, Guha S, Lohar S, Adhikari SS, Das D (2011) 9-acridone-4-carboxylic acid as an efficient Cr (III) fluorescent sensor: trace level detection, estimation and speciation studies. J Hazard Mater 188(1):274–280PubMed CrossRef
    28.Li Y, Yang L-L, Liu K, Zhao F-Y, Liu H, Ruan W-J (2015) Two hexaazatriphenylene-pyrene based Hg2+ fluorescent chemosensors applicable for test paper detection. New J Chem 39(4):2429–2432CrossRef
    29.Shi L, Song W, Li Y, Li D-W, Swanick KN, Ding Z, Long Y-T (2011) A multi-channel sensor based on 8-hydroxyquinoline ferrocenoate for probing Hg (II) ion. Talanta 84(3):900–904PubMed CrossRef
    30.Lei Y, Su Y, Huo J (2011) A novel fluorescent sensor for Cr3+ based on rhodamine-cored poly (amidoamine) dendrimer. Spectrochim Acta A 83(1):149–154CrossRef
    31.Das P, Ghosh A, Bhatt H, Das A (2012) A highly selective and dual responsive test paper sensor of Hg2+/Cr3+ for naked eye detection in neutral water. RSC Adv 2(9):3714–3721CrossRef
    32.Saha S, Chhatbar MU, Mahato P, Praveen L, Siddhanta A, Das A (2012) Rhodamine–alginate conjugate as Self indicating gel beads for efficient detection and scavenging of Hg2+ and Cr3+ in aqueous media. Chem Commun 48(11):1659–1661CrossRef
    33.Han J, Bu X, Zhou D, Zhang H, Yang B (2014) Discriminating Cr (III) and Cr (VI) using aqueous CdTe quantum dots with various surface ligands. RSC Adv 4(62):32946–32952CrossRef
    34.Zhang H, Liu Q, Wang T, Yun Z, Li G, Liu J, Jiang G (2013) Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Anal Chim Acta 770:140–146PubMed CrossRef
    35.Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89(26):7017–7036CrossRef
    36.Cho YJ, Choi HJ, Hyun MH (2008) Preparation of two new liquid chromatographic chiral stationary phases based on diastereomeric chiral crown ethers incorporating two different chiral units and their applications. J Chromatogr A 1191(1):193–198PubMed CrossRef
    37.Paik M-J, Kang JS, Huang B-S, Carey JR, Lee W (2013) Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Chromatogr A 1274:1–5PubMed CrossRef
    38.Mathias LJ, Carraher CE (1984) Crown ethers and phase transfer catalysis in polymer science, vol 227. Springer, New YorkCrossRef
    39.Dai S, Ju Y, Barnes C (1999) Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids†. J Chem Soc Dalton Trans 8:1201–1202CrossRef
    40.Shinkai S, Nakaji T, Ogawa T, Shigematsu K, Manabe O (1981) Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis (crown ether) with a butterfly-like motion. J Am Chem Soc 103(1):111–115CrossRef
    41.Morton-Blake D (2012) An intramembrane ion trap. J Mol Liq 167:57–68CrossRef
    42.Ekmekci G, Uzun D, Somer G, Kalaycı Ş (2007) A novel iron (III) selective membrane electrode based on benzo-18-crown-6 crown ether and its applications. J Membr Sci 288(1):36–40CrossRef
    43.Cao Y, Pei Q, Andersson MR, Yu G, Heeger AJ (1997) Light-emitting electrochemical cells with crown ether as solid electrolyte. J Electrochem Soc 144(12):L317–L320CrossRef
    44.Inoue Y, Gokel G (1990) Cation binding by macrocycles: complexation of cationic species by crown ethers, M. Dekker, New York
    45.Reichenbach-Klinke R, König B (2002) Metal complexes of azacrown ethers in molecular recognition and catalysis. J Chem Soc Dalton Trans (2):121–130
    46.Pond SJ, Tsutsumi O, Rumi M, Kwon O, Zojer E, Brédas J-L, Marder SR, Perry JW (2004) Metal-ion sensing fluorophores with large two-photon absorption cross sections: aza-crown ether substituted donor-acceptor-donor distyrylbenzenes. J Am Chem Soc 126(30):9291–9306PubMed CrossRef
    47.Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41(8):3210–3244PubMed CrossRef
    48.Aragoni MC, Arca M, Demartin F, Devillanova FA, Isaia F, Garau A, Lippolis V, Jalali F, Papke U, Shamsipur M (2002) Fluorometric chemosensors. Interaction of toxic heavy metal ions PbII, CdII, and HgII with novel mixed-donor phenanthroline-containing macrocycles: spectrofluorometric, conductometric, and crystallographic studies. Inorg Chem 41(25):6623–6632PubMed CrossRef
    49.Liu Q-X, Wang H, Zhao X-J, Yao Z-Q, Wang Z-Q, Chen A-H, Wang X-G (2012) N-heterocyclic carbene silver (I), palladium (II) and mercury (II) complexes: synthesis, structural studies and catalytic activity. CrystEngComm 14(16):5330–5348CrossRef
    50.Armstrong L, Lindoy L (1975) Nitrogen-oxygen donor macrocyclic ligands. I. Nickel (II) complexes of a new series of cyclic ligands derived from salicylaldehydes. Inorg Chem 14(6):1322–1326CrossRef
    51.Singh M, Singh P, Raju MD, Singh A (2007) Remote dianions and their application in the synthesis of macroheterocycles. Indian J Chem Sect B 46(4):694
    52.Li S-H, Chen F-R, Zhou Y-F, Wang J-N, Zhang H, Xu J-G (2009) Enhanced fluorescence sensing of hydroxylated organotins by a boronic acid-linked Schiff base. Chem Commun 28:4179–4181CrossRef
    53.Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media, New York
    54.Chauvin A-S, Frapart Y-M, Vaissermann J, Donnadieu B, Tuchagues J-P, Chottard J-C, Li Y (2003) Synthesis, X-ray crystal structure, and redox and electronic properties of iron (III)-polyimidazole complexes relevant to the metal sites of iron proteins. Inorg Chem 42(6):1895–1900PubMed CrossRef
  • 作者单位:Jafar Afshani (1)
    Alireza Badiei (1) (2)
    Mehdi Karimi (1)
    Negar Lashgari (1)
    Ghodsi Mohammadi Ziarani (3)

    1. School of Chemistry, College of Science, University of Tehran, Tehran, Iran
    2. Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
    3. Department of Chemistry, Faculty of Science, Alzahra University, Tehran, Iran
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biophysics and Biomedical Physics
    Biotechnology
    Biochemistry
    Analytical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4994
文摘
An iminocrown ether was synthesized and its fluorescence properties were studied in the presence of a variety of cations and anions in 99 % aqueous medium. The results revealed the interesting ability of the iminocrown ether in discriminately detection of Cr(III) and Cr(VI) ions in addition to detection of Hg2+ ion. Among various environmentally relevant metal ions, Cr3+ and Hg2+ enhanced and quenched the fluorescence emission, respectively and among anions only dichromate ion, Cr(VI), quenched the emission while the rest of ions insignificantly influenced the fluorescence emission. Selectivity of the iminocrown ether was also investigated and proved in the presence of excess of common competing ions. Furthermore, the fluorescence intensity of the iminocrown ether was studied as a function of concentrations of the three ions by performing a titration experiment for each one of them. The detection limits of 5.36 × 10−8, 2.06 × 10−6, and 7.49 × 10−8 mol L−1 were also calculated for Hg2+, Cr3+, and Cr(VI), respectively. Keywords Fluorescent sensor Iminocrown ether Mercury Chromium

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700