A simple 2,6-bis(2-benzimidazole)pyridyl incorporated optical probe affording selective ratiometric targeting of biologically and environmentally significant Zn2+ under buffer condition
详细信息    查看全文
  • 作者:Sabir H. Mashraqui ; Mukesh Chandiramani…
  • 关键词:2 ; 6 ; Bis(2 ; benzimidazole)pyridine incorporated probe ; Synthesis ; UV–visible ; Fluorescence ; Ratiometric Zn2+ sensor
  • 刊名:Journal of Inclusion Phenomena and Macrocyclic Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:84
  • 期:1-2
  • 页码:129-135
  • 全文大小:705 KB
  • 参考文献:1.De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)CrossRef
    2.Czarnik, A.W.: Chemical communication in water using fluorescent chemosensors. Acc. Chem. Res. 27, 302–308 (1994)CrossRef
    3.Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007)CrossRef
    4.Xu, Z., Yoon, J., Spring, D.R.: Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 39, 1996–2006 (2010)CrossRef
    5.Que, E.L., Domaille, D.W., Chang, C.J.: Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008)CrossRef
    6.Vallee, B.L., Falchuk, K.H.: The biochemical basis of zinc physiology. Physiol. Rev. 73, 79–118 (1993)
    7.Lippard, S.J., Berg, J.M.: Principles of bioinorganic chemistry. University Science Books, Mill Valley (1994)
    8.Cuajungco, M.P., Lees, G.J.: Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol. Disord. 4, 137–169 (1997)CrossRef
    9.Hardy, J.: Has the amyloid cascade hypothesis for Alzheimers disease been proved? Curr. Alzheimer Res. 3, 71–73 (2006)CrossRef
    10.Burdette, S.C., Walkup, G.K., Spingler, B., Tsein, R.Y., Lippard, S.J.: Fluorescent sensors for Zn2+ based in fluorescein platform: synthesis, properties and intracellular distribution. J. Am. Chem. Soc. 123, 7831–7841 (2001)CrossRef
    11.Kimura, E., Aoki, S.: Chemistry of zinc(II) fluorophore sensors. Biometals 14, 191–204 (2001)CrossRef
    12.Lakshmi, C., Hanshaw, R.G., Smith, B.D.: Fluorophore-linked zinc(II)dipicolylamine coordination complexes as sensors for phosphatidylserine-containing membranes. Tetrahedron 60, 11307–11315 (2004)CrossRef
    13.Jiang, P., Guo, Z.: Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord. Chem. Rev. 248, 205–229 (2004)CrossRef
    14.Rurack, K., Bricks, J.L., Reck, G., Radeglia, R., Resch-Genger, U.: Chalcone-analogue dyes emitting in the near-infrared (NIR): influence of donor–acceptor substitution and cation complexation on their spectroscopic properties and X-ray structure. J. Phys. Chem. A 104, 3087–3109 (2000)CrossRef
    15.Haugland, R.P.: Handbook of fluorescent probes and research products, 9th edn. Molecular Probes, Inc., Eugene (2002)
    16.Fahrni, C.J., O’Halloran, T.V.: Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J. Am. Chem. Soc. 121, 11448–11458 (1999)CrossRef
    17.Walkup, G.K., Burdette, S.C., Lippard, S.J., Tsien, R.Y.: A new cell-permeable fluorescent probe for Zn2+. J. Am. Chem. Soc. 122, 5644–5645 (2000)CrossRef
    18.Maruyama, S., Kikuchi, K., Hirano, T., Urano, Y., Nagano, T.: A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion. J. Am. Chem. Soc. 124, 10650–10651 (2002)CrossRef
    19.Xue, L., Liu, C., Jiang, H.: A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells. Chem. Commun. 9, 1061–1063 (2009)CrossRef
    20.Mikata, Y., Wakamatsu, M., Kawamura, A., Yamanaka, N., Yano, S., Odani, A., Morihiro, K., Tamotsu, S.: Methoxy-substituted TQEN family of fluorescent zinc sensors. Inorg. Chem. 45, 9262–9268 (2006)CrossRef
    21.Mashraqui, S.H., Khan, T., Sundaram, S., Betkar, R., Chandiramani, M.: A new intramolecular charge transfer receptor as a selective ratiometric ‘off–on’ sensor for Zn2+. Tetrahedron Lett. 48, 8487–8490 (2007)CrossRef
    22.Park, S.Y., Yoon, J.H., Hong, C.S., Souane, R., Kim, J.S., Matthews, S.E., Vicens, J.: A pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor for Cd2+ and Zn2+. J. Org. Chem. 73, 8212–8218 (2008)CrossRef
    23.Fan, J., Peng, X., Wu, Y., Lu, E., Hou, J., Zhang, H., Zhang, R., Fu, X.: A new PET fluorescent sensor for Zn2+. J. Lumin. 114, 125–130 (2005)CrossRef
    24.Ngwendson, J.N., Amiot, C.L., Srivastava, D.K., Banerjee, A.: Design of zinc(II) ion specific fluorescence sensor. Tetrahedron Lett. 47, 2327–2330 (2006)CrossRef
    25.Woodroofe, C.C., Lippard, S.J.: A novel two-fluorophore approach to ratiometric sensing of Zn2+. J. Am. Chem. Soc. 125, 11458–11459 (2003)CrossRef
    26.Taki, M., Wolford, J.L., O’Halloran, T.V.: Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. J. Am. Chem. Soc. 126, 712–713 (2004)CrossRef
    27.Henary, M.M., Wu, Y., Fahrni, C.J.: Zinc(II)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer. Chem. Eur. J. 10, 3015–3025 (2004)CrossRef
    28.Carol, P., Sreejith, S., Ajayaghosh, A.: Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions. Chem. Asian J. 2, 338–348 (2007)CrossRef
    29.Zhang, X., Lovejoy, K.S., Jasanoff, A., Lippard, S.J.: Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proc. Natl. Acad. Sci. USA 104, 10780–10785 (2007)CrossRef
    30.Gerber, T.I.A., Mayer, P., Tshentu, Z.R.: Imidazolate coordination of 2,6-bis(2-benzimidazolyl)pyridine in a dimeric rhenium(V) complex. J. Coord. Chem. 58, 1271–1277 (2005)CrossRef
    31.Li, L., Cao, W., Zheng, W., Fan, C., Chen, T.: Ruthenium complexes containing 2,6-bis(benzimidazolyl)pyridine derivative induce cancer cell apoptosis by triggering DNA damage-mediated p53 phosphorylation. Dalton Trans. 41, 12766–12772 (2012)CrossRef
    32.Chetia, B., Iyer, P.K.: 2,6-Bis(2-benzimidazolyl)pyridine as a chemosensor for fluoride ions. Tetrahedron Lett. 49, 94–97 (2008)CrossRef
    33.Mashraqui, S.H., Betkar, R., Chandiramani, M., Poonia, K., Quinonero, D., Frontera, A.: New 1,8-naphthyridine-based probes for the selective fluorescence signalling of toxic cadmium: synthesis, photophysical studies and molecular modelling. Supramol. Chem. 22, 524–531 (2010)CrossRef
    34.Mashraqui, S.H., Khan, T., Sundaram, S., Betkar, R., Chandiramani, M.: Rhodamine-pyridyl probe: a selective optical reporter for biologically important Zn2+. Chem. Lett. 38, 730–731 (2009)CrossRef
    35.Addison, A.W., Burke, P.J.: Synthesis of some imidazole- and pyrazole-derived chelating agents. J. Heterocycl. Chem. 18, 803–805 (1981)CrossRef
    36.Williams, N.J., Gan, W., Reibenspies, J.H., Hancock, R.D.: Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV–visible and fluoremetric study. Inorg. Chem. 48, 1407–1415 (2009)CrossRef
    37.Burdette, S.C., Lippard, S.J.: ICCC34—golden edition of coordination chemistry reviews. Coordination chemistry for the neurosciences. Coord. Chem. Rev. 216–217, 333–361 (2001)CrossRef
    38.Dawson, W.R., Windsor, M.W.: Fluorescence yields of aromatic compounds. J. Phys. Chem. 72, 3251–3260 (1968)CrossRef
    39.Zheng, S.L., Yang, J.H., Yu, X.L., Chen, X.M., Wong, W.T.: Synthesis, structure, photoluminescence, and theoretical studies of d10 metal complexes of 2,2′-dihydroxy-[1,1′]binaphthalenyl-3,3′-dicarboxylate. Inorg. Chem. 43, 830–838 (2004)CrossRef
    40.Li, J.R., Tao, Y., Yu, Q., Bu, X.H.: A pcu-type metal–organic framework with spindle [Zn7(OH)8]6+ cluster as secondary building units. Chem. Commun. 15, 1527–1529 (2007)CrossRef
    41.Mohanty, J., Bhasikuttan, A.C., Nau, W.M., Pal, H.: Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pKa shifts and binding affinities for cucurbit[7]uril and β-cyclodextrin. J. Phys. Chem. B. 110, 5132–5138 (2006)CrossRef
    42.Singh, M.K., Pal, H., Koti, A.S.R., Sapre, A.V.: Photophysical properties and rotational relaxation dynamics of neutral red bound to β-cyclodextrin. J. Phys. Chem. A 108, 1465 (2004)CrossRef
    43.Shortreed, M., Kopelman, R., Kuhn, M., Hoyland, B.: Fluorescent fiber-optic calcium sensor for physiological measurements. Anal. Chem. 68, 1414–1418 (1996)CrossRef
  • 作者单位:Sabir H. Mashraqui (1)
    Mukesh Chandiramani (1)
    Sushil Ghorpade (1)
    Jyoti Upathayay (1)
    Rupesh Mestri (1)
    Aniket Chilekar (1)

    1. University of Mumbai, Mumbai, Maharastra, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Organic Chemistry
    Food Science
    Crystallography
  • 出版者:Springer Netherlands
  • ISSN:1573-1111
文摘
A new chemosensor, designated as Dibcid has been synthesized in two steps from readily accessible 2,6-bis(2-benzimidazole)pyridine. Our photophysical studies revealed that of the several metal ions examined, biologically and environmentally significant Zn2+ exhibited highly selective emission wavelength shifts under the buffer condition. In contrast to Zn2+, the coordinatively competing and toxic Cd2+ elicited less remarkable optical responses as evidenced by its two order of magnitude lower stability constant compared to that of Zn2+. Moreover, metal ions, viz. Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Co2+, Ni2+, Cu2+, Hg2+ and Pb2+ exhibited insignificant optical perturbations even in concentrations far exceeding Zn2+. Clearly, the probe has the attributes to selectively target Zn2+ by ratiometric analysis under buffer conditions. Keywords 2,6-Bis(2-benzimidazole)pyridine incorporated probe Synthesis UV–visible Fluorescence Ratiometric Zn2+ sensor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700