Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity
详细信息    查看全文
  • 作者:Cora S Thiel (1) (2)
    Katrin Paulsen (1)
    Gesine Bradacs (1) (3)
    Karolin Lust (3) (4)
    Svantje Tauber (1)
    Claudia Dumrese (1) (5)
    Andre Hilliger (6)
    Kathrin Schoppmann (1) (3)
    Josefine Biskup (1)
    Nadine G?lz (1)
    Chen Sang (7)
    Urs Ziegler (5)
    Karl-Heinrich Grote (3)
    Frauke Zipp (8)
    Fengyuan Zhuang (7)
    Frank Engelmann (6) (9)
    Ruth Hemmersbach (10)
    Augusto Cogoli (11)
    Oliver Ullrich (1) (12) (3)
  • 关键词:Adaptive immunity ; spaceflight ; signal transduction ; gravisensitivity
  • 刊名:Cell Communication and Signaling
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:10
  • 期:1
  • 全文大小:573KB
  • 参考文献:1. Hemmersbach R, Haeder DP: Graviresponses in unicellular organisms. / FASEB J 1999, 13:S69-5.
    2. Hawkins W, Zieglschmid J: Clinical aspects of crew health. In / Biomedical results of Apollo. Edited by: Johnston R, Dietlein L, Berry C. NASA, Washington, DC; 1975:43-1.
    3. Konstantinova IV, Antropova YN, Legenkov VI, Zazhirey VD: Study of reactivity of blood lymphoid cells in crew members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships before and after flight. / Space Biol Med 1973, 7:48-5.
    4. Kimzey SL: Hematology and immunology studies. In / Biomedical results from Skylab. NASA-SP-377. National Aeronautics and Space Administration; 1973:249-82. 1977
    5. Cohrs RJ, Mehta SK, Schmid DS, Gilden DH, Pierson DL: Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. / J Med Virol 2008, 80:1116-122. CrossRef
    6. Mehta SK, Cohrs RJ, Forghani B, Zerbe G, Gilden DH, Pierson DL: Stress-induced subclinical reactivation of varicella zoster virus in astronauts. / J Med Virol 2004, 72:174-79. CrossRef
    7. Guéguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP: Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? / J Leukoc Biol 2009, 86:1027-038. CrossRef
    8. Cogoli A, Tschopp A, Fuchs-Bislin P: Cell sensitivity to gravity. / Science 1984, 225:228-30. CrossRef
    9. Cogoli A: Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies. / J Gravit Physiol 1996, 3:1-.
    10. Hatton JP, Gaubert F, Cazenave JP, Schmitt D: Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. / J Cell Biochem 2002, 87:39-0. CrossRef
    11. Schmitt DA, Hatton JP, Emond C, Chaput D, Paris H, Levade T, Cazenave JP, Schaffar L: The distribution of protein kinase C in human leukocytes is altered in microgravity. / FASEB J 1996, 10:1627-634.
    12. Cogoli M, Bechler B, Cogoli A, Arena N, Barni S, Pippia P, Sechi G, Valora N, Monti R: Lymphocytes on sounding rockets. / Adv Space Res 1992,12(1):141-44. CrossRef
    13. Boonyaratanakornkit JB, Cogoli A, Li CF, Schopper T, Pippia P, Galleri G, Meloni MA, Hughes-Fulford M: Key gravity-sensitive signaling pathways drive T cell activation. / FASEB J 2005, 19:2020-022.
    14. Br?ucker R, Cogoli A, Hemmersbach R: Graviperception and Graviresponse at the Cellular Level. In / Astrobiology The Quest for the Conditions of Life. Edited by: Horneck G, Baumstark-Khan C. Berlin Heidelberg New York: Springer-Verlag; 2002:287-33.
    15. Bakos A, Varkonyi A, Minarovits J, Batkai L: Effect of simulated microgravity on human lymphocytes. / J Gravit Physiol 2001, 8:P69-0.
    16. Kossmehl P, Shakibaei M, Cogoli A, Pickenhahn H, Paul M, Grimm D: Simulated microgravity induces programmed cell death in human thyroid carcinoma cells. / J Gravit Physiol 2002, 9:P295-96.
    17. Uva BM, Masini MA, Sturla M, Tagliafierro G, Strollo F: Microgravity-induced programmed cell death in astrocytes. / J Gravit Physiol 2002, 9:P275-76.
    18. Nakamura H, Kumei Y, Morita S, Shimokawa H, Ohya K, Shinomiya K: Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition. / Ann N Y Acad Sci 2003, 1010:143-47. CrossRef
    19. Cubano LA, Lewis ML: Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat). / Exp Gerontol 2000, 35:389-00. CrossRef
    20. Ohnishi T, Takahashi A, Wang X, Ohnishi K, Ohira Y, Nagaoka S: Accumulation of a tumor suppressor p53 protein in rat muscle during a space flight. / Mutat Res 1999, 430:271-74. CrossRef
    21. Schwarzenberg M, Pippia P, Meloni MA, Cossu G, Cogoli-Greuter M, Cogoli A: Signal transduction in T lymphocytes--a comparison of the data from space, the free fall machine and the random positioning machine. / Adv Space Res 1999, 24:793-00. CrossRef
    22. Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A: Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. / FEBS Lett 1998, 436:115-18. CrossRef
    23. Cogoli A, Cogoli-Greuter M: Activation and proliferation of lymphocytes and other mammalian cells in microgravity. / Adv Space Biol Med 1997, 6:33-9. CrossRef
    24. Cogoli A: The effect of hypogravity and hypergravity on cells of the immune system. / J Leukoc Biol 1993, 54:259-68.
    25. Hashemi BB, Penkala JE, Vens C, Huls H, Cubbage M, Sams CF: T cell activation responses are differentially regulated during clinorotation and in spaceflight. / FASEB J 1999, 13:2071-082.
    26. Hughes-Fulford M, Chang T, Li CF: Effect of Gravity on Monocyte Differentiation. In / 10th ESA Life Sciences Symposium/29th Annual ISGP Meeting/24th Annual ASGSB Meeting/ELGRA Symposium "Life in Space for Life on Earth". Angers, France; 2008.
    27. Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL: Changes in monocyte functions of astronauts. / Brain Behav Immun 2005, 19:547-54. CrossRef
    28. Meloni MA, Galleri G, Pippia P, Cogoli-Greuter M: Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. / Protoplasma 2006, 229:243-49. CrossRef
    29. Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M: Effects of Real Microgravity Aboard International Space Station on Monocytes Motility and Interaction with T-Lymphocytes. In / 10th ESA Life Sciences Symposium/29th Annual ISGP Meeting/24th Annual ASGSB Meeting/ELGRA Symposium "Life in Space for Life on Earth". Angers, France; 2008.
    30. Buravkova LB, Rykova MP, Grigorieva V, Antropova EN: Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro. / J Gravit Physiol 2004, 11:177-80.
    31. Ruyters G, Friedrich U: From the Bremen Drop Tower to the international space station ISS - Ways to weightlessness in the German space life sciences program. / Signal Transduction 2006, 6:397-05. CrossRef
    32. Hemmersbach R, von der Wiesche M, Seibt D: Ground-based experimental platforms in gravitational biology and human physiology. / Signal Transduction 2006, 6:381-87. CrossRef
    33. Briegleb W: Ground-borne methods and results in gravitational cell biology. / The Physiologist 1988, 31:44-7.
    34. Klaus D, Schatz A, Neubert J, H?fer M, Todd P: Escherichia coli growth kinetics: a definition of "functional weigthlessness" and a comparison of clinostat and space flight results. / Naturwissenschaften 1997, 143:449-55.
    35. Muller HJ: Approximation to a gravity-free situation for the human organism achievable at moderate expense. / Science 1959, 128:772. CrossRef
    36. Briegleb W: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. / ASGSB Bull 1992, 5:23-0.
    37. Klaus D: Space microbiology: microgravity and microorganisms. In / Encyclopedia of Environmental Microbiology. Edited by: Britton D. Wiley and Sons, New York (USA); 2002:2996-004.
    38. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK: Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. / J Biol Chem 2004, 279:51163-1. CrossRef
    39. Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. / Nucleic Acids Res 2001, 29:2002-007. CrossRef
    40. Norbury C, Blow J, Nurse P: Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. / EMBO J 1991, 10:3321-.
    41. Jessus C, Ozon R: Function and regulation of cdc25 protein phosphate through mitosis and meiosis. / Prog Cell Cycle Res 1995, 1:215-8. CrossRef
    42. Kumagai A, Dunphy WG: Binding of 14--3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. / Genes Dev 1990, 13:1067-2. CrossRef
    43. Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E: Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. / Nature 2001, 410:215-0. CrossRef
    44. Pahl G, Beitz W, Feldhusen J, Grote K.-H: / Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung; Methoden und Anwendung. 6. Aufl. Berlin: Springer-Verlag; 2005.
    45. Cogoli M: The fast-rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results. / ASGSB Bull 1992, 5:59-8.
    46. Cogoli A, Gmünder FK: Gravity effects on single cells: techniques, findings and theory. / Adv Space Biol Med 1991, 1:183-48. CrossRef
    47. Cogoli A, Valluchi-Morf M, Müller M, Briegleb W: The effects of hypogravity on human lymphocyte activation. / Aviat Space Envir Med 1980, 51:29-4.
    48. Pollard EC: Theoretical studies on living systems in the absence of mechanical stress. / J Theoret Biol 1965, 8:112-23. CrossRef
    49. Simons DM, Gardner EM, Lelkes PI: Intact T cell receptor signaling by CD4(+) T cells cultured in the rotating wall-vessel bioreactor. / J Cell Biochem 2010, 109:1201-.
    50. Maier JA: Impact of simulated microgravity on cell cycle control and cytokine release by U937 cells. / Int J Immunopathol Pharmacol 2006, 19:279-6.
    51. Coinu R, Chiaviello A, Galleri G, Franconi F, Crescenzi E, Palumbo G: Exposure to modeled microgravity induces metabolic idleness in malignant human MCF-7 and normal murine VSMC cells. / FEBS Lett 2006, 580:2465-0. CrossRef
    52. Cotrupi S, Ranzani D, Maier JA: Impact of modeled microgravity on microvascular endothelial cells. / Biochim Biophys Acta 2005, 1746:163-. CrossRef
    53. Flatt PM, Tang LJ, Scatena CD, Szak ST, Pietenpol JA: p53 regulation of G2 checkpoint is retinoblastoma protein dependent. / Mol Cell Biol 2000, 20:4210-223. CrossRef
    54. Barboule N, Lafon C, Chadebech P, Vidal S, Valette A: Involvement of p21 in the PKC-induced regulation of the G2/M cell cycle transition. / FEBS Lett 1999, 444:32-. CrossRef
    55. Kosaka C, Sasaguri T, Ishida A, Ogata J: Cell cycle arrest in the G2 phase induced by phorbol ester and diacylglycerol in vascular endothelial cells. / Am J Physiol 1996, 270:C170-.
    56. Lee CH, Yun HJ, Kang HS, Kim HD: ERK/MAPK pathway is required for changes of cyclin D1 and B1 during phorbol 12-myristate 13-acetate-induced differentiation of K562 cells. / IUBMB Life 1999, 48:585-1.
    57. Traore K, Trush MA, George M Jr, Spannhake EW, Anderson W, Asseffa A: Signal transduction of phorbol 12-myristate 13-acetate (PMA)-induced growth inhibition of human monocytic leukemia THP-1 cells is reactive oxygen dependent. / Leuk Res 2005, 29:863-9. CrossRef
    58. Singh KP, Kumari R, Dumond JW: Simulated microgravity-induced epigenetic changes in human lymphocytes. / J Cell Biochem 2010, in press.
    59. Ponnaiya B, Jenkins-Baker G, Randers-Pherson G, Geard CR: Quantifying a bystander response following irradiation using single-cell RT-PCR analysis. / Exp Hematol 2007, 35:64-8. CrossRef
    60. Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM, Phair RD, Singer RH: In vivo dynamics of RNA polymerase II transcription. / Nat Struct Mol Biol 2007,14(7):796-06. CrossRef
    61. Maiuri P, Knezevich A, De Marco A, Mazza D, Kula A, McNally JG, Marcello A: Fast transcription rates of RNA polymerase II in human cells. / EMBO reports 2011,12(12):1280-285. CrossRef
    62. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ: Radiation-induced cell cycle arrest compromised by p21 deficiency. / Nature 1995, 377:552-57. CrossRef
    63. Paulsen K, Thiel C, Timm J, Schmidt PM, Schoppmann K, Tauber S, Hemmersbach R, Seibt D, Kroll H, Grote KH, Zipp F, Schneider-Stock R, Cogoli A, Hilliger A, Engelmann F, Ullrich O: Microgravity-induced alterations in Signal Transduction in Cells of the Immune System. / Acta Astronaut 2010,67(9-0):1116-125. CrossRef
    64. Abbas T, Dutta A: p21 in cancer: intricate networks and multiple activities. / Nat Rev Cancer 2009, 9:400-14. CrossRef
    65. Badie C, Dziwura S, Raffy C, Tsigani T, Alsbeih G, Moody J, Finnon P, Levine E, Scott D, Bouffler S: Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. / British Journal of Cancer 2008, 98:1845-851. CrossRef
    66. Kim HS, Cho HJ, Cho HJ, Park SJ, Park KW, Chae ICH, Oh BH, Park YB, Lee MM: The essential role of p21 in radiation-induced cell cycle arrest of vascular smooth muscle cell. / J Mol Cell Cardiol 2004, 37:871-80. CrossRef
    67. Stuart SA, Wang JYJ: Ionizing Radiation Induces ATM-independent Degradation of p21Cip1 in Transformed Cells. / J Biol Chem 2009, 284:15061-5070. CrossRef
    68. Taylor WE, Bhasin S, Lalani R, Datta A, Gonzales-Cadavid NF: Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. / J Gravit Physiol 2002,9(2):61-0.
    69. Lebsack TW, Fa V, Woods CC, Gruener R, Manziello AM, Pecaut MJ, Gridley DS, Stodieck LS, Ferguson VL, Deluca D: Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors. / J Cell Biochem 2010, 110:372-1.
    70. Kaufmann I, Schachtner T, Feuerecker M, Schelling G, Thiel M, Choukèr A: Parabolic flight primes cytotoxic capabilities of polymorphonuclear leucocytes in humans. / Eur J Clin Invest 2009, 39:723-. CrossRef
  • 作者单位:Cora S Thiel (1) (2)
    Katrin Paulsen (1)
    Gesine Bradacs (1) (3)
    Karolin Lust (3) (4)
    Svantje Tauber (1)
    Claudia Dumrese (1) (5)
    Andre Hilliger (6)
    Kathrin Schoppmann (1) (3)
    Josefine Biskup (1)
    Nadine G?lz (1)
    Chen Sang (7)
    Urs Ziegler (5)
    Karl-Heinrich Grote (3)
    Frauke Zipp (8)
    Fengyuan Zhuang (7)
    Frank Engelmann (6) (9)
    Ruth Hemmersbach (10)
    Augusto Cogoli (11)
    Oliver Ullrich (1) (12) (3)

    1. Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
    2. Institute of Medical Physics and Biophysics, University of Muenster, Heisenbergstrasse 11, 48149, Muenster, Germany
    3. Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitaetsplatz 2, 39106, Magdeburg, Germany
    4. Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
    5. Center for Microsocopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
    6. KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
    7. School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd., Beijing, 100191, China
    8. Clinic for Neurology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstra?e 1, 55131, Mainz, Germany
    9. University of Applied Science Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
    10. Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147, Cologne, Germany
    11. Zero-G Life Tec, Riedhofstrasse 273, 8049, Zurich, Switzerland
    12. Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Kragujevac, Switzerland
文摘
In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700