Structural requirements of pyrimidine, thienopyridine and ureido thiophene carboxamide-based inhibitors of the checkpoint kinase 1: QSAR, docking, molecular dynamics analysis
详细信息    查看全文
  • 作者:Fangfang Wang (1)
    Zhi Ma (1)
    Yan Li (2)
    Jinan Wang (1)
    Yonghua Wang (13) yh_wang@nwsuaf.edu.cn
  • 关键词:Checkpoint kinase 1 – ; Molecular docking – ; Molecular dynamics – ; Quantitative structure activity relationship
  • 刊名:Journal of Molecular Modeling
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:18
  • 期:7
  • 页码:3227-3242
  • 全文大小:1.4 MB
  • 参考文献:1. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649
    2. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323
    3. Shinohara KI, Narita A, Oyoshi T, Bando T, Teraoka H, Sugiyama H (2004) Sequence-specific gene silencing in mammalian cells by alkylating pyrrole-imidazole polyaides. J Am Chem Soc 126:5113–5118
    4. Kawabe T (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3:513–519
    5. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85
    6. Chen P, Luo C, Deng YL, Ryan K, Register J, Margosiak S, Tempczyk-Russel A, Nguyen B, Myers P, Lundgren K (2000) The 1.7 脜 crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Cell 100:681–692
    7. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinase. Genes Dev 15:2177–2196
    8. Takai H, Tominaga K, Motoyama N, Minamishima YA, Nagahama H, Tsukiyama T, Ikeda K, Nakayama K, Nakanishi M (2000) Aberrant cell cycle checkpoint function and early embryonic death in chk1−/− mice. Genes Dev 14:1439–1447
    9. Chen Z, Xiao Z, Chen J, Ng SC, Sowin T, Sham H, Rosenberg S, Fesik S, Zhang H (2003) Human Chk1 expression is dispensable for somatic cell death and critical for sustaining G2 DNA damage checkpoint. Mol Cancer Ther 2:543–548
    10. Wang H, Wang X, Zhou XY, Chen DJ, Li GC, Iliakis G, Wang Y (2002) Ku affects the ataxia and Rad 3-related/CHK1-dependent S phase checkpoint response after camptothecin treatment. Cancer Res 62:2483–2487
    11. Huang S, Garbaccio RM, Fraley ME, Steen J, Kreatsoulas C, Hartman G, Stirdivant S, Drakas K, Rickert E, Walsh K, Hamilton CA, Buser J, Hardwick X, Mao M, Abrams S, Beck B, Tao W, Lobell R, Sepp-Lorenzino L, Yan Y, Ikuta M, Murphy JZ, Sardana V, Munshi S, Kuo L, Reilly M, Mahan E (2006) Development of 6-substituted indolylquinolinones as potent Chek1 kinase inhibitors. Bioorg Med Chem Lett 16:5907–5912
    12. Zhou BBS, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439
    13. Berlinck RGS, Britton R, Piers E, Lim L, Roberge M, Moreira da Rocha R, Andersen RJ (1998) Granulatimide and isogranulatimide, aromatic alkaloids with G2 checkpoint inhibition activity isolated from the Brazilian Ascidian Didemnum granulatum: structure elucidation and synthesis. J Org Chem 63:9850–9856
    14. Jiang X, Zhao B, Britton R, Lim LY, Leong D, Sanghera JS, Zhou BBS, Piers E, Andersen RJ, Roberge M (2004) Inhibition of Chk1 by the DNA damage checkpoint inhibitor iso- granulatimide. Mol Cancer Ther 3:1221–1227
    15. Sausville EA, Arbuck SG, Messmann R, Headless D, Bauer KS, Lush RM, Murgo A, Figg WD, Lahusen T, Jaken S, Jing XX, Roberge M, Fuse E, Kuwabara T, Senderowicz AM (2001) Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 19:2319–2333
    16. Shao RG, Cao CX, Shimizu T, O’Connor PM, Kohn KW, Pommier Y (1997) Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 57:4029–4035
    17. Zabludoff SD (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7:2955–2966
    18. Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J, Grant S, Ninkovic S, Chen P, Nichols T, Connor PO, Anderes K (2008) Breaching the DNA damage checkpoint via PF00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther 7:2394–2404
    19. Parry DA, Shanahan F, Davis N, Wiswell D, Seghezzi W, Pierce R, Hsieh Y, Paruch K, Guzi T, Biopharma SP (2009) Targeting the replication checkpoint with a potent and selective CHK1 inhibitor. In: Proceedings of the 100th Annual Meeting of the American Association for Cancer Research; 2009 Apr 18–22; Denver, CO. Philadelphia (PA): AACR; 2009. Abstract nr {2490}
    20. Fuse E, Tanii H, Kurata N, Kobayashi H, Shimada Y, Tamura T, Sasaki Y, Tanigawara Y, Lush RD, Headlee D, Figg WD, Arbuck SG, Senderowicz AM, Sausville EA, Akinaga S, Kuwabara T, Kobayashi S (1998) Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human alpha1-acid glycoprotein. Cancer Res 58:3248–3253
    21. Liu JL, Wang FF, Ma Z, Wang X, Wang YH (2011) Structural determination of three different series of compounds as Hsp90 inhibitors using 3D-QSAR modeling, molecular docking and molecular dynamics methods. Int J Mol Sci 12:946–970
    22. Wang FF, Li Y, Ma Z, Wang X, Wang YH (2011) Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model. doi:10.1007/s00894-011-1041-4
    23. Li Y, Wang YH, Yang L, Zhang SW, Liu CH, Yang SL (2005) Comparison of steroid substrates and inhibitors of P-glycoprotein by 3D-QSAR analysis. J Mol Struct 733:111–118
    24. Wang RW, Zhou L, Zuo ZL, Ma X, Yang M (2010) 3D-QSAR studies of checkpoint kinase 1 inhibitors based on molecular docking and CoMFA molecular simulation. Mol Simul 36:87–110
    25. Du U, Xi LL, Lei BL, Lu J, Li JZ, Liu HX, Yao XJ (2010) Structure-based quantitative structure-activity relationship studies of checkpoint kinase 1 inhibitors. J Comput Chem 31:2784–2793
    26. Dwyer MP, Paruch K, Labroli M, Alvarez C, Keertikar KM, Poker C (2011) Discovery of pyrazolo[1,5-a]pyrimidine-based CHK1 inhibitors: a template-based approach-part 1. Bioorg Med Chem Lett 21:467–470
    27. Labroli M, Paruch K, Labroli M, Alvarez C, Keertikar KM, Poker C (2011) Discovery of pyrazolo[1,5-a]pyrimidine-based CHK1 inhibitors: a template-based approach-part 2. Bioorg Med Chem Lett 21:471–474
    28. Zhao LY, Zhang YX, Dai CY, Guzi T, Wiswell D, Seghezzi W (2010) Design, synthesis and SAR of thienopyridines as potent CHK1 inhibitors. Bioorg Med Chem Lett 20:7216–7221
    29. Janetka JW, Almeida L, Ashwell S, Brassil PJ, Daly K, Deng C (2008) Discovery of a novel class of 2-ureido thiophene carboxamide checkpoint kinase inhibitors. Bioorg Med Chem Lett 18:4242–4248
    30. Clark M, Cramer RDV (1989) Validation of the general-purpose tripos 5.2 force field. J Comput Chem 10:982–1012
    31. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172
    32. Klebe G (1994) The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. J Mol Biol 237:212–235
    33. Cramer RD, Bunce JD, Patterson DE (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Struct Act Relat 7:18–25
    34. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511
    35. Rajni M, Ian AC, Sreedhara RV (2009) Assessment of the putative binding conformation of a pyrazolopyridine class of inhibitors of MAPKAPK2 using computational studies. Eur J Med Chem 1:98–105
    36. Li Y, Wang YH, Ding J, Wang Y, Chang YQ, Zhang SW (2008) In silico prediction of androgenic and nonandrogenic compounds using random forest. QSAR Comb Sci 27:1183–1192
    37. Wang YH, Li Y, Yang SL, Yang L (2005) Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inf Comput Sci 45:750–757
    38. Wang YH, Li Y, Yang SL, Yang L (2005) An insilico approach for screening flavonoids as P-glycoprotein inhibitors based on Bayesian-regularized neural network. J Comput Aided Mol Des 19:137–147
    39. Dragon, 5.3, Milano Chemometrics and QSAR Research Groups Inc. 2002
    40. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Med 7:306–317
    41. Van Aalten DMF, Bywater R, Findlay JBC, Hendlich M, Hooft RWW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262
    42. http://davapc1.bioch.dundee.ac.uk/programs/prodrg/prodrg.html
    43. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Comput Chem 81:3684–3690
    44. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190
    45. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. Chem Phys 103:8577–8593
    46. Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472
    47. Dragon molecular descriptor theory. In: Talete srl, DRAGON for Windows, v. 5.4, 2006
  • 作者单位:1. Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China2. School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China3. College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
Our focus of current research is directed toward clarification of novel inhibitors (pyrazolo[1,5-a] pyrimidine (PP), thienopyridines (TP) and 2-ureido thiophene carboxamide (UTC) derivatives) targeting Checkpoint kinase 1 (CHK1), which is an oncology target of significant current interest. Our computational approaches include: (i) QSAR analysis was carried out on the computed steric/electrostatic/hydrophobic/hydrogen bond donor/hydrogen bond acceptor interactions with the pseudoreceptor surface, which yielded predictive models capable of explaining much of the variance of inhibitors. The resultant optimum QSAR/CoMFA models exhibited (Ntraining = 51, Ntest = 16, Rcv2 = 0.47, Rpred2 = 0.7) for PP, (Ntraining = 45, Ntest = 9, Rcv2 = 0.52, Rpred2 = 0.75) for TP and (Ntraining = 58, Ntest = 15, Rcv2 = 0.67, Rpred2 = 0.88) for UTC. (ii) Molecular docking and molecular dynamics simulations experiments of the inhibitors into the binding site of CHK1 aided the interpretation of the QSAR models and demonstrated the binding modes in the aspects of inhibitor's conformation, subsite interaction, and hydrogen bonding interactions, which indicated that a set of critical residues (Cys87, Glu91, Glu85, Ser147, Asp148, Glu17, Leu84 and Asn135) played a key role in the drug-target interactions. The obtained results in the present work will be fruitful for the design of new potent and selective inhibitors of CHK1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700