Constraining the Higgs portal with antiprotons
详细信息    查看全文
  • 作者:Alfredo Urbano (1)
    Wei Xue (1) (2) (3)

    1. SISSA 鈥?International School for Advanced Studies
    ; via Bonomea 265 ; I-34136 ; Trieste ; Italy
    2. Center for Theoretical Physics
    ; Massachusetts Institute of Technology ; Cambridge ; MA ; 02139 ; U.S.A.
    3. INFN 鈥?Sezione di Trieste
    ; via Bonomea 265 ; I-34136 ; Trieste ; Italy
  • 关键词:Higgs Physics ; Beyond Standard Model
  • 刊名:Journal of High Energy Physics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:2015
  • 期:3
  • 全文大小:1,670 KB
  • 参考文献:1. Chamberlain, O, Segre, E, Wiegand, C, Ypsilantis, T (1955) Observation of anti-protons. Phys. Rev. 100: pp. 947 CrossRef
    2. Kachelriess, M, Serpico, PD, Solberg, MA (2009) On the role of electroweak bremsstrahlung for indirect dark matter signatures. Phys. Rev. D 80: pp. 123533
    3. Ciafaloni, P, Urbano, A (2010) TeV scale dark matter and electroweak radiative corrections. Phys. Rev. D 82: pp. 043512
    4. Ciafaloni, P (2011) Weak corrections are relevant for dark matter indirect detection. JCAP 03: pp. 019 CrossRef
    5. Bergstrom, L, Edsjo, J, Ullio, P (1999) Cosmic anti-protons as a probe for supersymmetric dark matter?. Astrophys. J. 526: pp. 215 CrossRef
    6. Barrau, A (2005) Kaluza-Klein dark matter and galactic antiprotons. Phys. Rev. D 72: pp. 063507
    7. Chardonnet, P, Mignola, G, Salati, P, Taillet, R (1996) Galactic diffusion and the anti-proton signal of supersymmetric dark matter. Phys. Lett. B 384: pp. 161 CrossRef
    8. Bergstrom, L, Edsjo, J, Gustafsson, M, Salati, P (2006) Is the dark matter interpretation of the egret gamma excess compatible with antiproton measurements?. JCAP 05: pp. 006 CrossRef
    9. Fornengo, N, Maccione, L, Vittino, A (2014) Constraints on particle dark matter from cosmic-ray antiprotons. JCAP 04: pp. 003 CrossRef
    10. Evoli, C, Cholis, I, Grasso, D, Maccione, L, Ullio, P (2012) Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties. Phys. Rev. D 85: pp. 123511
    11. Cirelli, M, Giesen, G (2013) Antiprotons from dark matter: current constraints and future sensitivities. JCAP 04: pp. 015 CrossRef
    12. Asano, M, Bringmann, T, Sigl, G, Vollmann, M (2013) 130 GeV gamma-ray line and generic dark matter model building constraints from continuum gamma rays, radio and antiproton data. Phys. Rev. D 87: pp. 103509
    13. Cheung, K, Tseng, P-Y, Yuan, T-C (2011) Cosmic antiproton constraints on effective interactions of the dark matter. JCAP 01: pp. 004 CrossRef
    14. Cheung, K, Song, J, Tseng, P-Y (2010) Cosmic positron and antiproton constraints on the gauge-Higgs dark matter. JCAP 09: pp. 023 CrossRef
    15. Garny, M, Ibarra, A, Vogl, S (2012) Dark matter annihilations into two light fermions and one gauge boson: General analysis and antiproton constraints. JCAP 04: pp. 033 CrossRef
    16. Cerdeno, DG, Delahaye, T, Lavalle, J (2012) Cosmic-ray antiproton constraints on light singlino-like dark matter candidates. Nucl. Phys. B 854: pp. 738 CrossRef
    17. Lavalle, J (2012) Cosmic-ray antiproton constraints on light dark matter candidates. J. Phys. Conf. Ser. 375: pp. 012032 CrossRef
    18. Simone, A, Riotto, A, Xue, W (2013) Interpretation of AMS-02 results: correlations among dark matter signals. JCAP 05: pp. 003 CrossRef
    19. Cirelli, M, Gaggero, D, Giesen, G, Taoso, M, Urbano, A (2014) Antiproton constraints on the GeV gamma-ray excess: a comprehensive analysis. JCAP 12: pp. 045 CrossRef
    20. Kappl, R, Winkler, MW (2014) The cosmic ray antiproton background for AMS-02. JCAP 09: pp. 051 CrossRef
    21. Bringmann, T, Vollmann, M, Weniger, C (2014) Updated cosmic-ray and radio constraints on light dark matter: implications for the GeV gamma-ray excess at the galactic center. Phys. Rev. D 90: pp. 123001
    22. Marzocca, D, Urbano, A (2014) Composite dark matter and LHC interplay. JHEP 07: pp. 107 CrossRef
    23. Silveira, V, Zee, A (1985) Scalar phantoms. Phys. Lett. B 161: pp. 136 CrossRef
    24. McDonald, J (1994) Gauge singlet scalars as cold dark matter. Phys. Rev. D 50: pp. 3637
    25. Burgess, CP, Pospelov, M, Veldhuis, T (2001) The minimal model of nonbaryonic dark matter: a singlet scalar. Nucl. Phys. B 619: pp. 709 CrossRef
    26. B. Patt and F. Wilczek, / Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
    27. Queiroz, FS, Sinha, K (2014) The poker face of the majoron dark matter model: LUX to keV line. Phys. Lett. B 735: pp. 69 CrossRef
    28. Djouadi, A, Kalinowski, J, Spira, M (1998) HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108: pp. 56 CrossRef
    29. Cline, JM, Kainulainen, K (2013) Electroweak baryogenesis and dark matter from a singlet Higgs. JCAP 01: pp. 012 CrossRef
    30. Guo, W-L, Wu, Y-L (2010) The real singlet scalar dark matter model. JHEP 10: pp. 083 CrossRef
    31. Gondolo, P (2004) DarkSUSY: Computing supersymmetric dark matter properties numerically. JCAP 07: pp. 008 CrossRef
    32. P. Gondolo et al., / DarkSUSY webpage, http://www.darksusy.org.
    33. Ade, PAR (2014) Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571: pp. A16 CrossRef
    34. ATLAS collaboration, / Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, ATLAS-CONF-2013-011 (2013).
    35. CMS collaboration, / Search for the Higgs boson decaying to invisible particles produced in association with Z bosons decaying to bottom quarks, CMS-PAS-HIG-13-028 (2013).
    36. Falkowski, A, Riva, F, Urbano, A (2013) Higgs at last. JHEP 11: pp. 111 CrossRef
    37. Akerib, DS (2014) First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 112: pp. 091303 CrossRef
    38. Ferriere, KM (2001) The interstellar environment of our galaxy. Rev. Mod. Phys. 73: pp. 1031 CrossRef
    39. Evoli, C, Gaggero, D, Grasso, D, Maccione, L (2008) Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model. JCAP 10: pp. 018 CrossRef
    40. Gaggero, D, Maccione, L, Bernardo, G, Evoli, C, Grasso, D (2013) Three-dimensional model of cosmic-ray lepton propagation reproduces data from the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett. 111: pp. 021102 CrossRef
    41. Engelmann, JJ, Ferrando, P, Soutoul, A, Goret, P, Juliusson, E (1990) Charge composition and energy spectra of cosmic-ray for elements from Be to NI 鈥?Results from HEAO-3-C2. Astron. Astrophys. 233: pp. 96
    42. Nolfo, GA (2006) Observations of the Li, Be, and B isotopes and constraints on cosmic-ray propagation. Adv. Space Res. 38: pp. 1558 CrossRef
    43. Yanasak, NE (2001) Measurement of the secondary radionuclides 10 Be, 26 Al, 36 Cl, 54 Mn, and 14 C and implications for the galactic cosmic-ray age. Astrophys. J. 563: pp. 768 CrossRef
    44. Ahn, HS (2008) Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment. Astropart. Phys. 30: pp. 133 CrossRef
    45. A.D. Panov et al., / Relative abundances of cosmic ray nuclei B-C-N-O in the energy region from 10 / GeV/n to 300 / GeV/n. Results from ATIC-2 (the science flight of ATIC), arXiv:0707.4415 [INSPIRE].
    46. Mueller, D (1991) Energy spectra and composition of primary cosmic rays. Astrophys. J. 374: pp. 356 CrossRef
    47. Orito, S (2000) Precision measurement of cosmic ray anti-proton spectrum. Phys. Rev. Lett. 84: pp. 1078 CrossRef
    48. Asaoka, Y (2002) Measurements of cosmic ray low-energy anti-proton and proton spectra in a transient period of the solar field reversal. Phys. Rev. Lett. 88: pp. 051101 CrossRef
    49. Boezio, M (2001) The cosmic ray anti-proton flux between 3 GeV and 49 GeV. Astrophys. J. 561: pp. 787 CrossRef
    50. Adriani, O (2013) Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment. JETP Lett. 96: pp. 621 CrossRef
    51. Ciafaloni, P (2011) On the importance of electroweak corrections for Majorana dark matter indirect detection. JCAP 06: pp. 018 CrossRef
    52. Sj枚strand, T, Mrenna, S, Skands, PZ (2008) A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178: pp. 852 CrossRef
    53. PYTHIA 8.1 web-page.
    54. Navarro, JF, Frenk, CS, White, SDM (1996) The structure of cold dark matter halos. Astrophys. J. 462: pp. 563 CrossRef
    55. Bernardo, G, Evoli, C, Gaggero, D, Grasso, D, Maccione, L (2013) Cosmic ray electrons, positrons and the synchrotron emission of the galaxy: consistent analysis and implications. JCAP 03: pp. 036 CrossRef
    56. Fermi -LAT collaboration, M. Ackermann et al., / Dark matter constraints from observations of 25 / Milky Way satellite galaxies with the Fermi Large Area Telescope, / Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].
    57. Fermi -LAT collaboration, B. Anderson, / A search for dark matter annihilation in dwarf spheroidal galaxies with pass 8 data, talk given at the 5th / International Fermi Symposium , October 20-24, Nagoya, Japan (2014).
    58. Feng, L, Profumo, S, Ubaldi, L (2015) Closing in on singlet scalar dark matter: LUX, invisible Higgs decays and gamma-ray lines. JHEP 03: pp. 045 CrossRef
    59. Navarro, JF (2010) The diversity and similarity of cold dark matter halos. Mon. Not. Roy. Astron. Soc. 402: pp. 21 CrossRef
    60. Graham, AW, Merritt, D, Moore, B, Diemand, J, Terzic, B (2006) Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models. Astron. J. 132: pp. 2685 8988" target="_blank" title="It opens in new window">CrossRef
    61. A. Burkert, / The Structure of dark matter halos in dwarf galaxies, / IAU Symp. 171 (1996) 175 [ / Astrophys. J. 447 (1995) L25] [astro-ph/9504041] [INSPIRE].
    62. Navarro, JF (2004) The Inner structure of 螞CDM halos 3: universality and asymptotic slopes. Mon. Not. Roy. Astron. Soc. 349: pp. 1039 CrossRef
    63. Graham, AW, Merritt, D, Moore, B, Diemand, J, Terzic, B (2006) Empirical models for dark matter halos. II. Inner profile slopes, dynamical profiles and 蟻/蟽 3. Astron. J. 132: pp. 2701 8990" target="_blank" title="It opens in new window">CrossRef
    64. El-Zant, AA, Hoffman, Y, Primack, J, Combes, F, Shlosman, I (2004) Flat-cored dark matter in cuspy clusters of galaxies. Astrophys. J. 607: pp. L75 CrossRef
    65. S. Ting, / The alpha magnetic spectrometer experiment on the international space station, talk given at dico.cern.ch/event/197799/page/1" class="a-plus-plus"> / SpacePart12 鈥?The 4 / th / International Conference on Particle and Fundamental dico.cern.ch/event/197799/page/1" class="a-plus-plus"> / Physics in Space , November 5-7, CERN, Geneva (2012) .
    66. Donato, F, Fornengo, N, Salati, P (2000) Anti-deuterons as a signature of supersymmetric dark matter. Phys. Rev. D 62: pp. 043003
    67. Ibarra, A, Wild, S (2013) Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS. JCAP 02: pp. 021 CrossRef
    68. Fornengo, N, Maccione, L, Vittino, A (2013) Dark matter searches with cosmic antideuterons: status and perspectives. JCAP 09: pp. 031 CrossRef
    69. M. Cirelli et al., / PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection, / JCAP 03 (2011) 051 [ / Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
    70. Kadastik, M, Raidal, M, Strumia, A (2010) Enhanced anti-deuteron dark matter signal and the implications of PAMELA. Phys. Lett. B 683: pp. 248 CrossRef
    71. Hryczuk, A, Cholis, I, Iengo, R, Tavakoli, M, Ullio, P (2014) Indirect detection analysis: wino dark matter case study. JCAP 07: pp. 031 CrossRef
    72. Duperray, R (2005) Flux of light antimatter nuclei near Earth, induced by cosmic rays in the Galaxy and in the atmosphere. Phys. Rev. D 71: pp. 083013
    73. Mori, K (2002) A novel antimatter detector based on x-ray deexcitation of exotic atoms. Astrophys. J. 566: pp. 604 CrossRef
    74. Fuke, H (2008) Current status and future plans for the General AntiParticle Spectrometer (GAPS). Adv. Space Res. 41: pp. 2056 CrossRef
    75. Lopez-Honorez, L, Schwetz, T, Zupan, J (2012) Higgs portal, fermionic dark matter and a standard model like Higgs at 125 GeV. Phys. Lett. B 716: pp. 179 CrossRef
    76. Kanemura, S, Matsumoto, S, Nabeshima, T, Okada, N (2010) Can WIMP dark matter overcome the nightmare scenario?. Phys. Rev. D 82: pp. 055026
    77. Huang, W-C, Urbano, A, Xue, W (2014) Fermi bubbles under dark matter scrutiny part II: particle physics analysis. JCAP 04: pp. 020 CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Quantum Field Theories, String Theory
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1029-8479
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700