Effects of normal stress, surface roughness, and initial grain size on the microstructure of copper subjected to platen friction sliding deformation
详细信息    查看全文
  • 作者:Shan-quan Deng ; Andrew-William Godfrey…
  • 关键词:copper ; surface treatment ; processing parameters ; grain refinement ; gradient microstructure ; hardness
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:57-69
  • 全文大小:23,578 KB
  • 参考文献:[1]X.D. Zhang, N. Hansen, Y.K. Gao, and X.X. Huang, Hall-petch and dislocation strengthening in graded nanostructured steel, Acta Mater, 60(2012), No. 16, p. 5933.CrossRef
    [2]X.C. Liu, H.W. Zhang, and K. Lu, Strain-induced ultrahard and ultrastable nanolaminated structure in nickel, Science, 342(2013), No. 6156, p. 337.CrossRef
    [3]X.Y. Wang, X.F. Liu, W.J. Zou, and J.X. Xie, Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling, Int. J. Miner. Metall. Mater., 20(2013), No. 12, p. 1170.CrossRef
    [4]C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhou, D. Qian, S.R. Mannava, and V.K. Vasudevan, Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility, Mater. Sci. Eng. A, 613(2014), p. 274.CrossRef
    [5]Y.S. Zhang, Z. Han, K. Wang, and K. Lu, Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear, 260(2006), No. 9-10, p. 942.CrossRef
    [6]B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, and M.O. Iefimov, Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of aisi-321 stainless steel, Mater. Sci. Eng. A, 458(2007), No. 1-2, p. 253.CrossRef
    [7]J.C. Villegas, L.L. Shaw, K. Dai, W. Yuan, J. Tian, P.K. Liaw, and D.L. Klarstrom, Enhanced fatigue resistance of a nickel-based hastelloy induced by a surface nanocrystallization and hardening process, Philos. Mag. Lett., 85(2005), No. 8, p. 427.CrossRef
    [8]T. Roland, D. Retraint, K. Lu, and J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scripta Mater., 54(2006), No. 11, p. 1949.CrossRef
    [9]X. Wang, D.D. Mao, X.C. Wei, and W.R. Wang, Cr atom diffusion in tribolayer T10 steel induced by dry sliding against 20CrMnTi steel, Appl. Surf. Sci., 270(2013), p. 145.CrossRef
    [10]H.W. Huang, Z.B. Wang, X.P. Yong, and K. Lu, Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment, Mater. Sci. Technol., 29(2013), No. 10, p. 1200.CrossRef
    [11]D.A. Hughes, D.B. Dawson, J.S. Korellis, and L.I. Weingarten, Near surface microstructures developing under large sliding loads, J. Mater. Eng. Perform., 3(1994), No. 4, p. 459.CrossRef
    [12]D.A. Hughes, D.B. Dawson, J.S. Korellis, and L.I. Weingarten, A microstructurally based method for stress estimates, Wear, 181-183(1995), No. 2, p. 458.CrossRef
    [13]Y.S. Zhang, W.L. Li, G. Wang, L.C. Zhang, B. Yao, and Z. Han, Formation of thick nanocrystalline surface layer on copper during oscillating sliding, Mater. Lett., 68(2012), p. 432.CrossRef
    [14]Y.S. Zhang, P.X. Zhang, H.Z. Niu, C. Chen, G. Wang, D.H. Xiao, X.H. Chen, Z.T. Yu, S.B. Yuan, and X.F. Bai, Surface nanocrystallization of Cu and Ta by sliding friction, Mater. Sci. Eng. A, 607(2014), p. 351.CrossRef
    [15]X. Wang, X.C. Wei, X.R. Yang, Z.B. Cheng, and W.R. Wang, Atomic diffusion of gradient ultrafine structured surface layer produced by T10 steel rubbing against 20CrMnTi steel, Wear, 304(2013), No. 1-2, p. 118.CrossRef
    [16]J.R. Jiang, F.H. Stott, and M.M. Stack, A mathematical model for sliding wear of metals at elevated temperatures, Wear, 181-183(1995), No. 1, p. 20.CrossRef
    [17]B. Yao, Z. Han, and K. Lu, Correlation between wear resistance and subsurface recrystallization structure in copper, Wear, 294-295(2012), p. 438.CrossRef
    [18]S. Karthikeyan, H.J. Kim, and D.A. Rigney, Velocity and strain-rate profiles in materials subjected to unlubricated sliding, Phys. Rev. Lett., 95(2005), No. 10, p. 10601.CrossRef
    [19]A. Emge, S. Karthikeyan, and D.A. Rigney, The effects of sliding velocity and sliding time on nanocrystalline tribolayer development and properties in copper, Wear, 267(2009), No. 1-4, p. 562.CrossRef
    [20]D.A. Hughes and N. Hansen, Exploring the limit of dislocation based plasticity in nanostructured metals, Phys. Rev. Lett., 112(2014), No. 13, p. 135504.CrossRef
    [21]S.Q. Deng, A. Godfrey, W. Liu, and C.L. Zhang, Microstructural evolution of pure copper subjected to friction sliding deformation at room temperature, Mater. Sci. Eng. A, 639(2015), p. 448.CrossRef
    [22]A. Kumar, T. Staedler, and X. Jiang, Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime, Beilstein. J. Nanotech., 4(2013), p. 66.CrossRef
    [23]K. Yamaguchi, C. Sasaki, R. Tsuboi, M. Atherton, T. Stolarski, and S. Sasaki, Effect of surface roughness on friction behaviour of steel under boundary lubrication, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 228(2014), No. 9, p. 1015.CrossRef
    [24]D.K. Leu, Modeling of surface roughness effect on dry contact friction in metal forming, Int. J. Adv. Manuf. Technol., 57(2011), No. 5, p. 575.CrossRef
    [25]W. Chen, L. Xiao, Q.Y. Sun, and J. Sun, Effect of the initial grain size on grain refinement in Ti-2Al-2.5Zr alloy subjected to multi-impact process, Mater. Sci. Eng. A., 554(2012), p. 86.CrossRef
  • 作者单位:Shan-quan Deng (1)
    Andrew-William Godfrey (1)
    Wei Liu (1)
    Cheng-lu Zhang (1)
    Ben Xu (1)

    1. Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Metallic Materials
    Mineral Resources
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1869-103X
文摘
The effects of applied normal stress, surface roughness, and initial grain size on the microstructure of pure Cu developed during platen friction sliding deformation (PFSD) processing were investigated. In each case, the deformation microstructure was characterized and the hardness of the treated surface layer was measured to evaluate its strength. The results indicated that the thickness of the deformed layer and the hardness at any depth increased with increasing normal stress. A smaller steel platen surface roughness resulted in less microstructural refinement, whereas the microstructural refinement was enhanced by decreasing the surface roughness of the Cu sample. In the case of a very large initial grain size (d > 10 mm), a sharper transition from fine-grain microstructure to undeformed material was obtained in the treated surface layer after PFSD processing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700