A novel dendritic crystal Co3O4 as high-performance anode materials for lithium-ion batteries
详细信息    查看全文
  • 作者:Yudi Mo (1) (2) (3)
    Qiang Ru (1) (2) (3)
    Xiong Song (1) (2) (3)
    Shejun Hu (1) (2) (3)
    Bonan An (1) (2) (3)
  • 关键词:Dendritic nanostructure ; Lithium ; ion batteries ; Co ; precipitation ; Anode
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:44
  • 期:7
  • 页码:781-788
  • 全文大小:1,633 KB
  • 参考文献:1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359-67. doi:10.1038/35104644 CrossRef
    2. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395-397. doi:10.1126/science.276.5317 CrossRef
    3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587-03. doi:10.1021/cm901452z CrossRef
    4. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652-57. doi:10.1038/451652a CrossRef
    5. Jin B, Liu AH, Liu GY, Yang ZZ, Zhong XB, Ma XZ, Yang M, Wang HY (2013) Fe3O4-pyrolytic graphite oxide composite as an anode material for lithium secondary batteries. Electrochim Acta 90:426-32. doi:10.1016/j.electacta.2012.11.114 CrossRef
    6. Zhang BB, Wang CY, Ru Q, Hu SJ, Sun DW, Song X, Li J (2013) SnO2 nanorods grown on MCMB as the anode material for lithium ion battery. J Alloy Compd 581:1-. doi:10.1016/j.jallcom.2013.06.158 CrossRef
    7. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206-213. doi:10.1021/nn300097q CrossRef
    8. Lai H, Li JX, Chen ZG, Huang ZG (2012) Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl Mater Inter 4:2325-328. doi:10.1021/am300378w CrossRef
    9. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496-99. doi:10.1038/35035045 CrossRef
    10. Du N, Zhang H, Chen BD, Wu JB, Ma XY, Liu ZH, Zhang YQ, Yang DR, Huang XH, Tu JP (2007) Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material for Li-battery applications. Adv Mater 19:4505-509. doi:10.1002/adma.200602513 CrossRef
    11. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567-73. doi:10.1038/nmat1672 CrossRef
    12. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit 47:2930-946. doi:10.1002/anie.200702505 CrossRef
    13. Larcher D, Sudant G, Leriche JB, Chabre Y, Tarascon JM (2002) The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc 149:A234–A241. doi:10.1149/1.1435358 CrossRef
    14. Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium ion batteries and gas sensors. Adv Funct Mater 15:851-57. doi:10.1149/1.1435358 CrossRef
    15. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2001) Searching for new anode materials for the Li-ion technology: time to deviate from the usual path. J Power Sources 97-:235-39. doi:10.1016/S0378-7753(01)00508-0 CrossRef
    16. Pralong V, Leriche JB, Beaudoin B, Naudin E, Morcrette M, Tarascon JM (2004) Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium. Solid State Ionics 166:295-05. doi:10.1016/j.ssi.2003.11.018 CrossRef
    17. Li Y, Tan B, Wu Y (2007) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265-70. doi:10.1021/nl0725906 CrossRef
    18. Needham SA, Wang GX, Kostantinov K, Tournayre Y, Lao Z, Liu HK (2006) Electrochemical performance of Co3O4-C composite anode materials. Electrochem Solid State Lett 9:A315–A319. doi:10.1149/1.2197108 CrossRef
    19. Zhang H, Wu JB, Zhai CX, Ma XY, Du N, Tu JP, Yang DR (2007) From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes. Nanotechnology 19:1-. doi:10.1088/0957-4484/19/03/035711
    20. Laruelle S, Urbina RH, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:A285–A292. doi:10.1149/1.1353566 CrossRef
    21. Liu Y, Mi CH, Su LH, Zhang XG (2008) Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim Acta 53:2507-513. doi:10.1016/j.electacta.2007.10.020 CrossRef
    22. Lou XW, Deng D, Lee JY, Archer LA (2008) Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J Mater Chem 18:4397-401. doi:10.1039/b810093 CrossRef
    23. Larcher D, Bonnin D, Cortes R, Rivals I, Personaz L, Tarascon JM (2003) Combined XRD, EXAFS, and M?ssbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes. J Electrochem Soc 150:A1643–A1650. doi:10.1149/1.1622959 CrossRef
    24. Poizot P, Larunelle S, Grugeon S, Tarascon JM (2002) Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J Electrochem Soc 149:A1212–A1217. doi:10.1149/1.1497981 CrossRef
    25. Shaju KM, Jiao F, Debart A, Bruce PG (2007) Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys Chem Chem Phys 9:1837-842. doi:10.1039/b617519h CrossRef
    26. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895-04. doi:10.1016/S1293-2558(03)00114-6 CrossRef
    27. Tao LQ, Zai JT, Wang KX, Zhang HJ, Xu M, Shen J, Su YZ, Qian XF (2012) Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J Power Sources 202:230-35. doi:10.1016/j.jpowsour.2011.10.131 CrossRef
    28. Liu J, Xia H, Lu L, Xue DF (2010) Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J Mater Chem 20:1506-510. doi:10.1039/b923834d CrossRef
    29. Luo W, Hu XL, Sun YM, Huang YH (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916-921. doi:10.1039/c2jm00094f CrossRef
    30. Du N, Xu YF, Zhang H, Yu JX, Zhai CX, Yang DR (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320-324. doi:10.1021/ic102129w CrossRef
    31. Liu B, Zhang J, Wang XF, Chen G, Chen D, Zhou CW, Shen GZ (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005-011. doi:10.1021/n1300794f CrossRef
    32. Yang XL, Fan KC, Zhu YH, Shen JH, Jiang X, Zhao P, Li CZ (2012) Tailored grapheme-encapsulated mesoporous Co3O4 composite microspheres for high-performance lithium ion batteries. J Mater Chem 22:17278-7283. doi:10.1039/c2jm32571c CrossRef
    33. Tian L, Zou HL, Fu JX, Yang XF, Wang Y, Guo HL, Fu XH, Liang CL, Wu MM, Shen PK, Gao QM (2010) Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv Funct Mater 20:617-23. doi:10.1002/adfm.200901503 CrossRef
  • 作者单位:Yudi Mo (1) (2) (3)
    Qiang Ru (1) (2) (3)
    Xiong Song (1) (2) (3)
    Shejun Hu (1) (2) (3)
    Bonan An (1) (2) (3)

    1. School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, People’s Republic of China
    2. Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou, 510006, People’s Republic of China
    3. Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, People’s Republic of China
  • ISSN:1572-8838
文摘
The spinel-type Co3O4 with a dendritic nanostructure is prepared via homogeneous co-precipitation method in the presence of oxalic as complex agent. The special structure was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis, which show that the precursor can be transformed into dendritic crystal Co3O4 by calcining at 500?°C for 2?h with a diameter of 20-0?nm. Such a three-dimensional interconnected structure used as an anode material for lithium-ion batteries shows that the discharge specific capacity still remains at 951.7?mA?h?g? after 100 cycles at a current density of 100?mA?g?. Furthermore, this material also presents a good rate performance; when the current density increases to 1,000, 4,000, and 8,000?mA?g?, the reversible capacity can render about 1,126.2, 932.3, and 344.2?mA?h?g?, respectively. The excellent electrochemical performance is mainly attributed to the dendritic nanostructure composed of interconnected Co3O4 nanoparticles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700