The loss of taste genes in cetaceans
详细信息    查看全文
  • 作者:Kangli Zhu (1)
    Xuming Zhou (2)
    Shixia Xu (1)
    Di Sun (1)
    Wenhua Ren (1)
    Kaiya Zhou (1)
    Guang Yang (1)

    1. Jiangsu Key Laboratory for Biodiversity and Biotechnology
    ; College of Life Sciences ; Nanjing Normal University ; Nanjing ; 210023 ; China
    2. Division of Genetics
    ; Department of Medicine ; Brigham and Women鈥檚 Hospital ; Harvard Medical School ; Boston ; MA ; 02115 ; USA
  • 关键词:Cetacean ; Taste genes ; Pseudogenization ; Molecular evolution
  • 刊名:BMC Evolutionary Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:394 KB
  • 参考文献:1. Gatesy, J, Geisler, JH, Chang, J, Buell, C, Berta, A, Meredith, RW, Springer, MS, McGowen, MR (2013) A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol 66: pp. 479-506 CrossRef
    2. Zhou, X, Xu, S, Yang, Y, Zhou, K, Yang, G (2011) Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol Phylogenet Evol 61: pp. 255-264 CrossRef
    3. Fordyce, RE (1989) Origins and evolution of Antarctic marine mammals. Geol Soc London Spec Publ 47: pp. 269-281 CrossRef
    4. Thewissen, J, Cooper, LN, George, JC, Bajpai, S (2009) From land to water: the origin of whales, dolphins, and porpoises. Evo Edu Outreach 2: pp. 272-288 CrossRef
    5. Uhen, MD (2010) The origin (s) of whales. Annu Rev Earth Pl Sc 38: pp. 189-219 CrossRef
    6. Liu, Y, Cotton, JA, Shen, B, Han, X, Rossiter, SJ, Zhang, S (2010) Convergent sequence evolution between echolocating bats and dolphins. Curr Biol 20: pp. R53-R54 CrossRef
    7. Liu, Y, Rossiter, SJ, Han, X, Cotton, JA, Zhang, S (2010) Cetaceans on a molecular fast track to ultrasonic hearing. Curr Biol 20: pp. 1834-1839 CrossRef
    8. Davies, K, Cotton, JA, Kirwan, JD, Teeling, EC, Rossiter, SJ (2012) Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence. Heredity 108: pp. 480-489 CrossRef
    9. Kishida, T, Kubota, S, Shirayama, Y, Fukami, H (2007) The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett 3: pp. 428-430 CrossRef
    10. McGowen, MR, Clark, C, Gatesy, J (2008) The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. Syst Biol 57: pp. 574-590 CrossRef
    11. Hayden, S, Bekaert, M, Crider, TA, Mariani, S, Murphy, WJ, Teeling, EC (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20: pp. 1-9 CrossRef
    12. Zhou, X, Sun, F, Xu, S, Fan, G, Zhu, K, Liu, X, Chen, Y, Shi, C, Yang, Y, Huang, Z, Chen, J, Hou, H, Guo, X, Chen, W, Chen, Y, Wang, X, Lv, T, Yang, D, Zhou, J, Huang, B, Wang, Z, Zhao, W, Tian, R, Xiong, Z, Xu, J, Liang, X, Chen, B, Liu, W, Wang, J, Pan, S (2013) Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat Commun 4: pp. 2708
    13. Kinnamon, SC, Cummings, TA (1992) Chemosensory Transduction Mechanisms in Taste. Annu Rev Physiol 54: pp. 715-731 CrossRef
    14. Lindemann, B (1996) Taste reception. Physiol Rev 76: pp. 719-766
    15. Heck, GL, Mierson, S, DeSimone, JA (1984) Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223: pp. 403-405 CrossRef
    16. Hettinger, TP, Frank, ME (1990) Specificity of amiloride inhibition of hamster taste responses. Brain Res 513: pp. 24-34 CrossRef
    17. Yoshida, R, Horio, N, Murata, Y, Yasumatsu, K, Shigemura, N, Ninomiya, Y (2009) NaCl responsive taste cells in the mouse fungiform taste buds. Neuroscience 159: pp. 795-803 CrossRef
    18. Eylam, S, Spector, AC (2005) Taste discrimination between NaCl and KCl is disrupted by amiloride in inbred mice with amiloride-insensitive chorda tympani nerves. Am J Physiol Regul Integr Comp Physiol 288: pp. R1361-R1368 CrossRef
    19. Garcia, J, Hankins, WG (1975) The evolution of bitter and the acquisition of toxiphobia. Olfaction Taste 5: pp. 39-45
    20. Glendinning, JI (1994) Is the bitter rejection response always adaptive?. Physiol Behav 56: pp. 1217-1227 CrossRef
    21. Ganchrow, JR, Steiner, JE, Daher, M (1983) Neonatal facial expressions in response to different qualities and intensities of gustatory stimuli. Infant Behav Dev 6: pp. 473-484 CrossRef
    22. Bachmanov, AA, Beauchamp, GK (2006) Taste receptor genes. Annu Rev Nutr 27: pp. 389-414 CrossRef
    23. Bachmanov, AA, Li, X, Reed, DR, Ohmen, JD, Li, S, Chen, Z, Tordoff, MG, Jong, PJ, Wu, C, West, DB (2001) Positional cloning of the mouse saccharin preference (Sac) locus. Chem Senses 26: pp. 925-933 CrossRef
    24. Max, M, Shanker, YG, Huang, L, Rong, M, Liu, Z, Campagne, F, Weinstein, H, Damak, S, Margolskee, RF (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28: pp. 58-63
    25. Montmayeur, J, Liberles, SD, Matsunami, H, Buck, LB (2001) A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4: pp. 492-498
    26. Nelson, G, Hoon, MA, Chandrashekar, J, Zhang, Y, Ryba, NJ, Zuker, CS (2001) Mammalian sweet taste receptors. Cell 106: pp. 381-390 CrossRef
    27. Nelson, G, Chandrashekar, J, Hoon, MA, Feng, L, Zhao, G, Ryba, NJ, Zuker, CS (2002) An amino-acid taste receptor. Nature 416: pp. 199-202 CrossRef
    28. Adler, E, Hoon, MA, Mueller, KL, Chandrashekar, J, Ryba, NJ, Zuker, CS (2000) A novel family of mammalian taste receptors. Cell 100: pp. 693-702 CrossRef
    29. Chandrashekar, J, Mueller, KL, Hoon, MA, Adler, E, Feng, L, Guo, W, Zuker, CS, Ryba, NJ (2000) T2Rs function as bitter taste receptors. Cell 100: pp. 703-711 CrossRef
    30. Matsunami, H, Montmayeur, J, Buck, LB (2000) A family of candidate taste receptors in human and mouse. Nature 404: pp. 601-604 CrossRef
    31. Jiang, P, Josue, J, Li, X, Glaser, D, Li, W, Brand, JG, Margolskee, RF, Reed, DR, Beauchamp, GK (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci USA 109: pp. 4956-4961 CrossRef
    32. Ugawa, S, Minami, Y, Guo, W, Saishin, Y, Takatsuji, K, Yamamoto, T, Tohyama, M, Shimada, S (1998) Receptor that leaves a sour taste in the mouth. Nature 395: pp. 555-556 CrossRef
    33. Stevens, DR, Seifert, R, Bufe, B, M眉ller, F, Kremmer, E, Gauss, R, Meyerhof, W, Kaupp, UB, Lindemann, B (2001) Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413: pp. 631-635 CrossRef
    34. Richter, TA, Dvoryanchikov, GA, Chaudhari, N, Roper, SD (2004) Acid-Sensitive Two-Pore Domain Potassium (K鈥墌鈥?P) Channels in Mouse Taste Buds. J Neurophysiol 92: pp. 1928 CrossRef
    35. LopezJimenez, ND, Cavenagh, MM, Sainz, E, Cruz Ithier, MA, Battey, JF, Sullivan, SL (2006) Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co鈥恊xpressed in a subset of taste receptor cells. J Neurochem 98: pp. 68-77 CrossRef
    36. Ishimaru, Y, Inada, H, Kubota, M, Zhuang, H, Tominaga, M, Matsunami, H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 103: pp. 12569-12574 CrossRef
    37. Huang, AL, Chen, X, Hoon, MA, Chandrashekar, J, Guo, W, Tr盲nkner, D, Ryba, NJ, Zuker, CS (2006) The cells and logic for mammalian sour taste detection. Nature 442: pp. 934-938 CrossRef
    38. Horio, N, Yoshida, R, Yasumatsu, K, Yanagawa, Y, Ishimaru, Y, Matsunami, H, Ninomiya, Y (2011) Sour taste responses in mice lacking PKD channels. PLoS One 6: pp. e20007 CrossRef
    39. Huque, T, Cowart, BJ, Dankulich-Nagrudny, L, Pribitkin, EA, Bayley, DL, Spielman, AI, Feldman, RS, Mackler, SA, Brand, JG (2009) Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS One 4: pp. e7347 CrossRef
    40. Chandrashekar, J, Kuhn, C, Oka, Y, Yarmolinsky, DA, Hummler, E, Ryba, NJ, Zuker, CS (2010) The cells and peripheral representation of sodium taste in mice. Nature 464: pp. 297-301 CrossRef
    41. Hummler, E, Beermann, F (2000) Scnn1 sodium channel gene family in genetically engineered mice. J Am Soc Nephrol 11: pp. S129-S134
    42. Shi, P, Zhang, J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23: pp. 292-300 CrossRef
    43. Li, R, Fan, W, Tian, G, Zhu, H, He, L, Cai, J, Huang, Q, Cai, Q, Li, B, Bai, Y, Zhang, Z, Zhang, Y, Wang, W, Li, J, Wei, F, Li, H, Jian, M, Li, J, Zhang, Z, Nielsen, R, Li, D, Gu, W, Yang, Z, Xuan, Z, Ryder, OA, Leung, FC, Zhou, Y, Cao, J, Sun, X, Fu, Y (2009) The sequence and de novo assembly of the giant panda genome. Nature 463: pp. 311-317 CrossRef
    44. Zhao, H, Yang, J, Xu, H, Zhang, J (2010) Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol 27: pp. 2669-2673 CrossRef
    45. Zhao, H, Zhou, Y, Pinto, CM, Charles-Dominique, P, Galindo-Gonz谩lez, J, Zhang, S, Zhang, J (2010) Evolution of the sweet taste receptor gene Tas1r2 in bats. Mol Biol Evol 27: pp. 2642-2650 CrossRef
    46. Zhao, H, Xu, D, Zhang, S, Zhang, J (2012) Genomic and genetic evidence for the loss of umami taste in bats. Genome Biol Evol 4: pp. 73-79 CrossRef
    47. Li, D, Zhang, J (2014) Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol 31: pp. 303-309 CrossRef
    48. Meyerhof, W (2005) Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol 154: pp. 37-72
    49. Gonz谩lez-Perrett, S, Kim, K, Ibarra, C, Damiano, AE, Zotta, E, Batelli, M, Harris, PC, Reisin, IL, Arnaout, MA, Cantiello, HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Aca Sci USA 98: pp. 1182-1187 CrossRef
    50. Nummela, S, Hussain, ST, Thewissen, J (2006) Cranial anatomy of Pakicetidae (Cetacea, Mammalia). J Vertebr Paleontol 26: pp. 746-759 CrossRef
    51. O'Leary, MA, Uhen, MD (1999) The time of origin of whales and the role of behavioral changes in the terrestrial-aquatic transition. Paleobiology 25: pp. 534-556
    52. Miller, D (1998) Seals and Sea Lions. Voyageur Press, Stillwater
    53. Werth, AJ (2007) Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation. Anat Rec 290: pp. 546-568 CrossRef
    54. Yoshimura, K, Shindoh, J, Kobayashi, K (2002) Scanning electron microscopy study of the tongue and lingual papillae of the California sea lion (Zalophus californianus californianus). Anat Rec 267: pp. 146-153 CrossRef
    55. Yoshimura, K, Kobayashi, K (1997) A comparative morphological study on the tongue and the lingual papillae of some marine mammals鈥擯articularly of four species of odontoceti and zalophus. Shigaku= Odontology 85: pp. 385-407 CrossRef
    56. Li, Y (1983) The tongue of Baiji, Lipotes vexillifer. Acta Zool Sin 29: pp. 35-41
    57. Rozengurt, E (2006) Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and 伪-gustducin in the mammalian gut. Am J Physiol-Gastr L 291: pp. G171-G177
    58. Bezen莽on, C, Coutre, J, Damak, S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32: pp. 41-49 CrossRef
    59. Margolskee, RF, Dyer, J, Kokrashvili, Z, Salmon, KS, Ilegems, E, Daly, K, Maillet, EL, Ninomiya, Y, Mosinger, B, Shirazi-Beechey, SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 104: pp. 15075-15080 CrossRef
    60. Rozengurt, E, Sternini, C (2007) Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 7: pp. 557-562 CrossRef
    61. Finger, TE, B枚ttger, B, Hansen, A, Anderson, KT, Alimohammadi, H, Silver, WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100: pp. 8981-8986 CrossRef
    62. Shah, AS, Ben-Shahar, Y, Moninger, TO, Kline, JN, Welsh, MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325: pp. 1131-1134 CrossRef
    63. Deshpande, DA, Wang, WC, McIlmoyle, EL, Robinett, KS, Schillinger, RM, An, SS, Sham, JS, Liggett, SB (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16: pp. 1299-1304 CrossRef
    64. Oya, M, Suzuki, H, Watanabe, Y, Sato, M, Tsuboi, T (2011) Amino acid taste receptor regulates insulin secretion in pancreatic 尾鈥恈ell line MIN6 cells. Genes Cells 16: pp. 608-616 CrossRef
    65. Ren, X, Zhou, L, Terwilliger, R, Newton, SS, Araujo, IE (2009) Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci 3: pp. 12 CrossRef
    66. Singh, N, Vrontakis, M, Parkinson, F, Chelikani, P (2011) Functional bitter taste receptors are expressed in brain cells. Biochem Bioph Res Co 406: pp. 146-151 CrossRef
    67. Chaudhari, N, Landin, AM, Roper, SD (2000) A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3: pp. 113-119 CrossRef
    68. San Gabriel, A, Uneyama, H, Yoshie, S, Torii, K (2005) Cloning and characterization of a novel mGluR1 variant from vallate papillae that functions as a receptor for L-glutamate stimuli. Chem Senses 30: pp. i25-i26 CrossRef
    69. Toyono, T, Seta, Y, Kataoka, S, Kawano, S, Shigemoto, R, Toyoshima, K (2003) Expression of metabotropic glutamate receptor group I in rat gustatory papillae. Cell Tissue Res 313: pp. 29-35 CrossRef
    70. Conigrave, AD, Brown, EM (2006) Taste Receptors in the Gastrointestinal Tract II. l-Amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol-Gastr L 291: pp. G753-G761
    71. Brand, JG, Teeter, JH, Silver, WL (1985) Inhibition by amiloride of chorda tympani responses evoked by monovalent salts. Brain Res 334: pp. 207-214 CrossRef
    72. Canessa, CM, Schild, L, Buell, G, Thorens, B, Gautschi, I, Horisberger, J, Rossier, BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: pp. 463-467 CrossRef
    73. Collier, DM, Snyder, PM (2009) Extracellular chloride regulates the epithelial sodium channel. J Biol Chem 284: pp. 29320-29325 CrossRef
    74. Kellenberger, S, Schild, L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82: pp. 735-767
    75. Adams, CM, Snyder, PM, Welsh, MJ (1997) Interactions between subunits of the human epithelial sodium channel. J Biol Chem 272: pp. 27295-27300 CrossRef
    76. Firsov, D, Robert-Nicoud, M, Gruender, S, Schild, L, Rossier, BC (1999) Mutational analysis of cysteine-rich domains of the epithelium sodium channel (ENaC). Identification of cysteines essential for channel expression at the cell surface. J Biol Chem 274: pp. 2743-2749 CrossRef
    77. Staub, O, Dho, S, Henry, P, Correa, J, Ishikawa, T, McGlade, J, Rotin, D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15: pp. 2371
    78. Abriel, H, Loffing, J, Rebhun, JF, Pratt, JH, Schild, L, Horisberger, J, Rotin, D, Staub, O (1999) Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. J Clin Invest 103: pp. 667-673 CrossRef
    79. Yang, Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: pp. 1586-1591 CrossRef
    80. Weadick, CJ, Chang, BS (2012) An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol Biol Evol 29: pp. 1297-1300 CrossRef
    81. Murrell, B, Moola, S, Mabona, A, Weighill, T, Sheward, D, Pond, SLK, Scheffler, K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30: pp. 1196-1205 CrossRef
    82. Woolley, S, Johnson, J, Smith, MJ, Crandall, KA, McClellan, DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19: pp. 671-672 CrossRef
    83. Garty, H, Palmer, LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77: pp. 359-396
    84. Hummler, E, Barker, P, Gatzy, J, Beermann, F, Verdumo, C, Schmidt, A, Boucher, R, Rossier, BC (1996) Early death due to defective neonatal lung liquid clearance in 伪ENaC-deficient mice. Nat Genet 12: pp. 325-328 CrossRef
    85. Chang, SS, Grunder, S, Hanukoglu, A, R枚sler, A, Mathew, PM, Hanukoglu, I, Schild, L, Lu, Y, Shimkets, RA, Nelson-Williams, C (1996) Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12: pp. 248-253 CrossRef
    86. Hansson, JH, Nelson-Williams, C, Suzuki, H, Schild, L, Shimkets, R, Lu, Y, Canessa, C, Iwasaki, T, Rossier, B, Lifton, RP (1995) Hypertension caused by a truncated epithelial sodium channel 纬 subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 11: pp. 76-82 CrossRef
    87. Hansson, JH, Schild, L, Lu, Y, Wilson, TA, Gautschi, I, Shimkets, R, Nelson-Williams, C, Rossier, BC, Lifton, RP (1995) A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA 92: pp. 11495-11499 CrossRef
    88. Medway, W, Geraci, JR (1965) Blood chemistry of the bottlenose dolphin (Tursiops truncatus). APS--Legacy Content 209: pp. 169-172
    89. Koopman, HN, Westgate, AJ, Read, AJ, Gaskin, DE (1995) Blood chemistry of wild harbor porpoises Phocoena phocoena (L.). Mar Mammal Sci 11: pp. 123-135 CrossRef
    90. Ortiz, RM (2001) Osmoregulation in marine mammals. J Exp Biol 204: pp. 1831-1844
    91. Kjeld, M (2003) Salt and water balance of modern baleen whales: rate of urine production and food intake. Can J Zoo 81: pp. 606-616 CrossRef
    92. Birukawa, N, Ando, H, Goto, M, Kanda, N, Pastene, LA, Nakatsuji, H, Hata, H, Urano, A (2005) Plasma and urine levels of electrolytes, urea and steroid hormones involved in osmoregulation of cetaceans. Zool Sci 22: pp. 1245-1257 CrossRef
    93. Hoelzel, AR (1992) Molecular Genetic Analysis of Populations: A Practical Approach. IRL Press, Oxford
    94. Thompson, JD, Higgins, DG, Gibson, TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: pp. 4673-4680 CrossRef
    95. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    96. Nikaido, M, Rooney, AP, Okada, N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96: pp. 10261-10266 CrossRef
    97. Agnarsson, I, May-Collado, LJ (2008) The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol Phylogenet Evol 48: pp. 964-985 CrossRef
    98. Xiong, Y, Brandley, MC, Xu, S, Zhou, K, Yang, G (2009) Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evol Biol 9: pp. 20 CrossRef
    99. Zhu K-L, Zhou X-M, Xu S-X, Sun D, Zhou K-Y, Yang G: Data from The loss of taste genes in cetaceans. / Dryad Digital Repos 2014, 釁?釁? http://dx.doi.org/10.5061/dryad.7qp63.
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background Five basic taste modalities, sour, sweet, bitter, salt and umami, can be distinguished by humans and are fundamental for physical and ecological adaptations in mammals. Molecular genetic studies of the receptor genes for these tastes have been conducted in terrestrial mammals; however, little is known about the evolution and adaptation of these genes in marine mammals. Results Here, all five basic taste modalities, sour, sweet, bitter, salt and umami, were investigated in cetaceans. The sequence characteristics and evolutionary analyses of taste receptor genes suggested that nearly all cetaceans may have lost all taste modalities except for that of salt. Conclusions This is the first study to comprehensively examine the five basic taste modalities in cetaceans with extensive taxa sampling. Our results suggest that cetaceans have lost four of the basic taste modalities including sour, sweet, umami, and most of the ability to sense bitter tastes. The integrity of the candidate salt taste receptor genes in all the cetaceans examined may be because of their function in Na+ reabsorption, which is key to osmoregulation and aquatic adaptation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700