Synthesis and performance of Ca-α/β-SiAlON composites from tailings
详细信息    查看全文
  • 作者:Hong-shun Hao (1) (2)
    Yang Yang (1) (2)
    Fang Lian (3)
    Wen-yuan Gao (1) (2)
    Gui-shan Liu (1) (2)
    Zhi-qiang Hu (1) (2)
  • 关键词:ceramic materials ; composite materials ; tailings ; mechanical properties ; microstructure ; sintering
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:21
  • 期:5
  • 页码:515-522
  • 全文大小:
  • 参考文献:1. I. Najafi Hajivar and M. Kokabi, Polymer-network hydrogel facilitated synthesis of Ca-α-SiAlON balls composed of nanoparticles, / Ceram. Int., 39(2013), No. 3, p. 3321. CrossRef
    2. N. Calis Acikbas, R. Kumar, F. Kara, H. Mandal, and B. Basu, Influence of β-Si3N4 particle size and heat treatment on microstructural evolution of α:β-SiAlON ceramics, / J. Eur. Ceram. Soc., 31(2011), No. 4, p. 629. CrossRef
    3. B.Y. Ma, Y. Li, C. Yan, and Y.S. Ding, Effects of synthesis temperature and raw materials composition on preparation of β-SiAlON based composites from fly ash, / Trans. Nonferrous Met. Soc. China, 22(2012), No. 1, p. 129. CrossRef
    4. J.J. Li, J. Wang, H.Y. Chen, and B.D. Sun, Microstructure observation of β-SiAlON-15R ceramics synthesized from aluminum dross, / Ceram. Int., 38(2012), No. 4, p. 3075. CrossRef
    5. H.S. Hao, L.H. Xu, X.M. Ni, J.Y. Yang, Y.J. Guo, Z.S. Zhang, and X.W. Li, Synthesis of environment-friendly SiAlON/SiC multiphase ceramics from cheap nonmetallic resources, / Rare Metal Mat. Eng., 38(2009), Suppl. 2, p. 670.
    6. T. Jiang, J.B. Wu, X.X. Xue, P.N. Duan, and M.S. Chu, Carbothermal formation and microstructural evolution of α-SiAlON-AlN-BN powders from boron-rich blast furnace slag, / Adv. Powder Technol., 23(2012), No. 3, p. 406. CrossRef
    7. X.M. Hou, C.S. Yue, M. Zhang, and K.C. Chou, Thermal oxidation of SiAlON powders synthesized from coal gangue, / Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 77. CrossRef
    8. J. Lu, L. Alakangas, Y. Jia, and J. Gotthardsson, Evaluation of the application of dry covers over carbonate-rich sulphide tailings, / J. Hazard. Mater., 244-45(2013), p. 180. CrossRef
    9. H.S. Hao, L.H. Xu, W. Zhai, Z.S. Zhang, X.M. Zhang, and Z.P. Xie, Development of SiAlON ecomaterials drived from solid waste of containing silican and aluminum, / J. Inorg. Mater., 25(2010), No. 11, p. 1121. CrossRef
    10. J.S. Ahn, H. Song, G.J. Yim, S.W. Ji, and J.G. Kim, An engineered cover system for mine tailings using a hardpan layer: a solidification/stabilization method for layer and field performance evaluation, / J. Hazard. Mater., 197(2011), p. 153. CrossRef
    11. Y.W. Choi, Y. J. Kim, O. Choi, K.M. Lee, and M. Lachemi, Utilization of tailings from tungsten mine waste as a substitution material for cement, / Constr. Build. Mater., 23(2009), No. 7, p. 2481. CrossRef
    12. M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, / Cem. Concr. Compos., 32(2010), No. 10, p. 819. CrossRef
    13. T. Zhao, B.W. Li, Z.Y. Gao, and D.Q. Chang, The utilization of rare earth tailing for the production of glass-ceramics, / Mater. Sci. Eng., B, 170(2010), No.1-, p. 22. CrossRef
    14. Z.L. Yi, H.H Sun, X.Q. Wei, and C. Li, Iron ore tailings used for the preparation of cementitious material by compound thermal activation, / Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 355. CrossRef
    15. B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and ?. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, / J. Hazard. Mater., 168(2009), No. 2-, p. 848. CrossRef
    16. H.S. Hao, H.L. Wang, C.X. Fan, X.G. Qian, Y.H. Wang, S.Q. Cui, and M.H. Hu, Synthesis of Ca-α/β-SiAlON powders from tailings by carbothermal reduction nitridation, / Mater. Rev., 26(2012), No. 16, p. 125.
    17. S.M. Han and S.J.L. Kang, Phase transformation from α-to β-SiAlON by liquid infiltration in Y-Si-Al-O-N system, / J. Eur. Ceram. Soc., 12(1993), No. 6, p. 431. CrossRef
    18. G.W. Cui, / Defect Diffusion and Sintering, Tsinghua University Press, Beijing, 1990, p. 168.
    19. S.L. Hwang and I.W. Chen, Reaction hot-pressing of α-SiAlON and β-SiAlON ceramics, / J. Am. Ceram. Soc., 77(1994), p. 165. CrossRef
    20. K. Watari, M. Yasuoka, M.C. Valecillos, and S. Kanzaki, Reaction process and densification process of mixed α-β-SiAlON ceramics, / J. Eur. Ceram. Soc., 15(1995), No. 2, p. 173. CrossRef
    21. C. Chatfield, T. Ekstr?m, and M. Mikus, Microstructural investigation of alpha-beta yttrium SiAlON materials, / J. Mater. Sci., 21(1986), No. 7, p. 2297. CrossRef
    22. T.S. Sheu, Microstructure and mechanical properties of the in situ β-Si3N4/α-SiAlON composite, / J. Am. Ceram. Soc., 77(1994), No. 9, p. 2345. CrossRef
    23. Z.L. Lu, G.Q. Zhu, F. Tao, and D.Y. Jiang, The effect of microstructure on the scatter of the mechanical properties data of α-β-SiAlON, / J. Exp. Mech., 20(2005), No. 2, p. 235.
    24. G.F. Xu, H.R. Zhuang, F.Y. Wu, and W.L. Li, Microwave reaction sintering of α-β-SiAlON composite ceramics, / J. Eur. Ceram. Soc., 17(1997), No. 5, p. 675. CrossRef
  • 作者单位:Hong-shun Hao (1) (2)
    Yang Yang (1) (2)
    Fang Lian (3)
    Wen-yuan Gao (1) (2)
    Gui-shan Liu (1) (2)
    Zhi-qiang Hu (1) (2)

    1. Institute of New Energy Materials, Dalian Polytechnic University, Dalian, 116034, China
    2. Liaoning Provincial Key Laboratory of New Materials and Material Modification, Dalian Polytechnic University, Dalian, 116034, China
    3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
  • ISSN:1869-103X
文摘
Ca-α/β-SiAlON composites were prepared using Ca-α/β-SiAlON powder synthesized from gold ore tailings, which contained abundant Si and Al elements as the major raw materials together with minor additives, through a pressure-less sintering method. The influences of sintering temperature on the phase composition and microstructure of the composites were analyzed. The scanning electron microscopy images of the composites show the interlacing of grains with elongated columnar, short columnar and plate-like morphologies. The composites sintered at 1520°C for 6 h have a flexural strength of 352 MPa, Vickers hardness of 11.2 GPa, and fracture toughness of 4.8 MPa·m1/2. The relative content of each phase in the products is I(Ca-α-SiAlON):I(β-SiAlON):I(Fe3Si) = 23:74:3, where I i stands for the diffraction peak intensity of phase i.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700