Vasculature analysis of patient derived tumor xenografts using species-specific PCR assays: evidence of tumor endothelial cells and atypical VEGFA-VEGFR1/2 signalings
详细信息    查看全文
  • 作者:Ivan Bieche (91) (92)
    Sophie Vacher (91)
    David Vallerand (93) (94)
    Sophie Richon (95) (96)
    Rana Hatem (91)
    Ludmilla De Plater (93)
    Ahmed Dahmani (93)
    Fariba N茅mati (93)
    Eric Angevin (97)
    Elisabetta Marangoni (93)
    Sergio Roman-Roman (93)
    Didier Decaudin (93) (98)
    Virginie Dangles-Marie (100) (93) (99)

    91. Laboratoire d鈥橭ncog茅n茅tique
    ; Institut Curie - H么pital Rene Huguenin ; 35 rue Dailly ; St Cloud ; France
    92. INSERM UMR745
    ; Sorbonne Paris Cit茅 ; 4 avenue de l鈥橭bservatoire ; Paris ; France
    93. D茅partement de Recherche Translationnelle
    ; Laboratoire d鈥橧nvestigation Pr茅clinique ; Paris ; France
    94. Roche SAS
    ; 30 ; cours de l鈥橧le Seguin ; 92650 ; Boulogne-Billancourt ; Cedex ; France
    95. IFR71
    ; Sorbonne Paris Cit茅 ; 4 avenue de l鈥橭bservatoire ; Paris ; France
    96. CNRS
    ; UMR 144 ; Centre de Recherche ; Institut Curie ; 26 rue d鈥橴lm ; Paris ; France
    97. Institut de Canc茅rologie Gustave Roussy
    ; 39 rue Camille Desmoulins ; Villejuif ; France
    98. D茅partement d鈥橭ncologie M茅dicale
    ; Institut Curie ; 26 rue d鈥橴lm ; Paris ; France
    100. Research Center
    ; Institut Curie ; 12 rue Lhomond ; F-75005 ; Paris ; France
    99. Sorbonne Paris Cit茅
    ; Universit茅 Paris Descartes ; 4 avenue de l鈥橭bservatoire ; Paris ; France
  • 关键词:Tumor vasculature ; Patient ; derived xenografts ; Species ; specific PCR assays ; Endothelial markers ; VEGFA ; VEGFR1/2 signalings
  • 刊名:BMC Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:555 KB
  • 参考文献:1. Ellis, LM, Hicklin, DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8: pp. 579-591 CrossRef
    2. Hicklin, DJ, Ellis, LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23: pp. 1011-1027 CrossRef
    3. Olsson, AK, Dimberg, A, Kreuger, J, Claesson-Welsh, L (2006) VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7: pp. 359-371 CrossRef
    4. Ping, YF, Bian, XW (2011) Consice review: Contribution of cancer stem cells to neovascularization. Stem Cells 29: pp. 888-894 CrossRef
    5. Knizetova, P, Ehrmann, J, Hlobilkova, A, Vancova, I, Kalita, O, Kolar, Z, Bartek, J (2008) Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle 7: pp. 2553-2561 CrossRef
    6. Lichtenberger, BM, Tan, PK, Niederleithner, H, Ferrara, N, Petzelbauer, P, Sibilia, M (2010) Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 140: pp. 268-279 CrossRef
    7. Hamerlik, P, Lathia, JD, Rasmussen, R, Wu, Q, Bartkova, J, Lee, M, Moudry, P, Bartek, J, Fischer, W, Lukas, J, Rich, JN, Bartek, J (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209: pp. 507-520 CrossRef
    8. Tentler, JJ, Tan, AC, Weekes, CD, Jimeno, A, Leong, S, Pitts, TM, Arcaroli, JJ, Messersmith, WA, Eckhardt, SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9: pp. 338-350 CrossRef
    9. Bieche, I, Onody, P, Laurendeau, I, Olivi, M, Vidaud, D, Lidereau, R, Vidaud, M (1999) Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. Clin Chem 45: pp. 1148-1156
    10. Baird, SM, Beattie, GM, Lannom, RA, Lipsick, JS, Jensen, FC, Kaplan, NO (1982) Induction of lymphoma in antigenically stimulated athymic mice. Cancer Res 42: pp. 198-206
    11. Eberhard, A, Kahlert, S, Goede, V, Hemmerlein, B, Plate, KH, Augustin, HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60: pp. 1388-1393
    12. Fukumura, D, Xavier, R, Sugiura, T, Chen, Y, Park, EC, Lu, N, Selig, M, Nielsen, G, Taksir, T, Jain, RK, Seed, B (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94: pp. 715-725 CrossRef
    13. Liang, WC, Wu, X, Peale, FV, Lee, CV, Meng, YG, Gutierrez, J, Fu, L, Malik, AK, Gerber, HP, Ferrara, N, Fuh, G (2006) Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 281: pp. 951-961 CrossRef
    14. Hendrix, MJ, Seftor, EA, Hess, AR, Seftor, RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3: pp. 411-421 CrossRef
    15. Alvero, AB, Fu, HH, Holmberg, J, Visintin, I, Mor, L, Marquina, CC, Oidtman, J, Silasi, DA, Mor, G (2009) Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27: pp. 2405-2413 CrossRef
    16. Bussolati, B, Bruno, S, Grange, C, Ferrando, U, Camussi, G (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. Faseb J 22: pp. 3696-3705 CrossRef
    17. Bussolati, B, Grange, C, Sapino, A, Camussi, G (2009) Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med 13: pp. 309-319 CrossRef
    18. Hardee, ME, Zagzag, D (2012) Mechanisms of Glioma-Associated Neovascularization. Am J Pathol 181: pp. 1126-1141 CrossRef
    19. Ricci-Vitiani, L, Pallini, R, Biffoni, M, Todaro, M, Invernici, G, Cenci, T, Maira, G, Parati, EA, Stassi, G, Larocca, LM, De Maria, R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468: pp. 824-828 CrossRef
    20. Soda, Y, Marumoto, T, Friedmann-Morvinski, D, Soda, M, Liu, F, Michiue, H, Pastorino, S, Yang, M, Hoffman, RM, Kesari, S, Verma, IM (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A 108: pp. 4274-4280 CrossRef
    21. Wang, R, Chadalavada, K, Wilshire, J, Kowalik, U, Hovinga, KE, Geber, A, Fligelman, B, Leversha, M, Brennan, C, Tabar, V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468: pp. 829-833 CrossRef
    22. Ghanekar, A, Ahmed, S, Chen, K, Adeyi, O (2013) Endothelial cells do not arise from tumor-initiating cells in human hepatocellular carcinoma. BMC Cancer 13: pp. 485 CrossRef
    23. Julien, S, Merino-Trigo, A, Lacroix, L, Pocard, M, Goere, D, Mariani, P, Landron, S, Bigot, L, Nemati, F, Dartigues, P, Weiswald, LB, Lantuas, D, Morgand, L, Pham, E, Gonin, P, Dangles-Marie, V, Job, B, Dessen, P, Bruno, A, Pierre, A, De Th茅, H, Soliman, H, Nunes, M, Lardier, G, Calvet, L, Demers, B, Prevost, G, Vrignaud, P, Roman-Roman, S, Duchamp, O (2012) Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res 18: pp. 5314-5328 CrossRef
    24. Reyal, F, Guyader, C, Decraene, C, Lucchesi, C, Auger, N, Assayag, F, De Plater, L, Gentien, D, Poupon, MF, Cottu, P, De Cremoux, P, Gestraud, P, Vincent-Salomon, A, Fontaine, JJ, Roman-Roman, S, Delattre, O, Decaudin, D, Marangoni, E (2012) Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res 14: pp. R11 CrossRef
    25. Fonsatti, E, Altomonte, M, Nicotra, MR, Natali, PG, Maio, M (2003) Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 22: pp. 6557-6563 CrossRef
    26. Angevin, E, Glukhova, L, Pavon, C, Chassevent, A, Terrier-Lacombe, MJ, Goguel, AF, Bougaran, J, Ardouin, P, Court, BH, Perrin, JL, Vallancien, G, Triebel, F, Escudier, B (1999) Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab Invest 79: pp. 879-888
    27. Cottu, P, Marangoni, E, Assayag, F, de Cremoux, P, Vincent-Salomon, A, Guyader, C, de Plater, L, Elbaz, C, Karboul, N, Fontaine, JJ, Chateau-Joubert, S, Boudou-Rouquette, P, Alran, S, Dangles-Marie, V, Gentien, D, Poupon, MF, Decaudin, D (2012) Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat 133: pp. 595-606 CrossRef
    28. de Plater, L, Lauge, A, Guyader, C, Poupon, MF, Assayag, F, de Cremoux, P, Vincent-Salomon, A, Stoppa-Lyonnet, D, Sigal-Zafrani, B, Fontaine, JJ, Brough, R, Lord, CJ, Ashworth, A, Cottu, P, Decaudin, D, Marangoni, E (2010) Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br J Cancer 103: pp. 1192-1200 CrossRef
    29. Leuraud, P, Taillandier, L, Medioni, J, Aguirre-Cruz, L, Criniere, E, Marie, Y, Kujas, M, Golmard, JL, Duprez, A, Delattre, JY, Sanson, M, Poupon, MF (2004) Distinct responses of xenografted gliomas to different alkylating agents are related to histology and genetic alterations. Cancer Res 64: pp. 4648-4653 CrossRef
    30. Nemati, F, Bras-Goncalves, R, Fontaine, JJ, de Pinieux, G, De Cremoux, P, Chapelier, A, Daniel, C, Laurent-Puig, P, Livartowski, A, Judde, JG, Bordier, V, Poupon, MF, Decaudin, D (2009) Preclinical assessment of cisplatin-based therapy versus docetaxel-based therapy on a panel of human non-small-cell lung cancer xenografts. Anticancer Drugs 20: pp. 932-940 CrossRef
    31. Nemati, F, Daniel, C, Arvelo, F, Legrier, ME, Froget, B, Livartowski, A, Assayag, F, Bourgeois, Y, Poupon, MF, Decaudin, D (2010) Clinical relevance of human cancer xenografts as a tool for preclinical assessment: example of in-vivo evaluation of topotecan-based chemotherapy in a panel of human small-cell lung cancer xenografts. Anticancer Drugs 21: pp. 25-32 CrossRef
    32. Workman, P, Aboagye, EO, Balkwill, F, Balmain, A, Bruder, G, Chaplin, DJ, Double, JA, Everitt, J, Farningham, DA, Glennie, MJ, Kelland, LR, Robinson, V, Stratford, IJ, Tozer, GM, Watson, S, Wedge, SR, Eccles, SA (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102: pp. 1555-1577 CrossRef
    33. Bieche, I, Parfait, B, Le Doussal, V, Olivi, M, Rio, MC, Lidereau, R, Vidaud, M (2001) Identification of CGA as a novel estrogen receptor-responsive gene in breast cancer: an outstanding candidate marker to predict the response to endocrine therapy. Cancer Res 61: pp. 1652-1658
    34. The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2407/14/178/prepub
  • 刊物主题:Cancer Research; Oncology; Stem Cells; Animal Models; Internal Medicine;
  • 出版者:BioMed Central
  • ISSN:1471-2407
文摘
Background Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. Methods To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. Results As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. Conclusions Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700