Fluorescent Amines as a New Tool for Study of Siliceous Sponges
详细信息    查看全文
  • 作者:Vadim V. Annenkov ; Ol’ga Yu. Glyzina ; Ol’ga N. Verkhozina ; Elena N. Danilovtseva
  • 关键词:Demospongiae sponge ; Silica ; Spicules ; Fluorescent dyes
  • 刊名:SILICON
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:6
  • 期:4
  • 页码:227-231
  • 全文大小:1,981 KB
  • 参考文献:1. Borchiellini C, Chombard C, Lafay B, Boury-Esnault N (2000) Molecular systematics of sponges (Porifera). Hydrobiologia 420:15-7 CrossRef
    2. Wang X, Schr?der H C, Wang K, Kaandorpd J A, Müller W E G (2012) Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol–gels to solid 3D silica composite structures. Soft Matter 8:9501-518 CrossRef
    3. Blunt J W, Copp B R, Keyzers R A, Munro M H G, Prinsep M R (2013) Marine natural products. Nat Prod Rep 30:237-23 CrossRef
    4. Uriz M J, Turon X, Becerro M A, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc Res Tech 62:279-99 CrossRef
    5. Uriz M J, Turon X, Becerro M A (2003) Silica deposition in demosponges. Progr Mol Subcell Biol 33:163-93 CrossRef
    6. Weaver J C, Pietrasanta L I, Hedin N, Chmelka B F, Hansma P K, Morse D E (2003) Nanostructural features of demosponge biosilica. J Struct Biol 144:271-81 CrossRef
    7. Lopez P J, Gautiera C, Livageband J, Coradin T (2005) Mimicking biogenic silica nanostructures formation. Curr Nanosci 1:73-3 CrossRef
    8. Ehrlich H, Janussen D, Simon P, Bazhenov V V, Shapkin N P, Erler C, Mertig M, Born R, Heinemann S, Hanke T, Worch H, Vournakis J N (2008) Nanostructural organization of naturally occurring composites—part II: silica-chitin-based biocomposites. J Nanomater Artic ID 670235:1-. 10.1155/2008/670235
    9. Gr?ger C, Lutz K, Brunner E (2008) Biomolecular self-assembly and its relevance in silica biomineralization. Cell Biochem Biophys 50:23-9 CrossRef
    10. Schr?der H C, Wang X, Tremel W, Ushijima H, Müller. W E G (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455-74 CrossRef
    11. Müller W E G, Wang X, Cui F-Z, Jochum P K, Tremel W, Bill J, Schr?der H C, Natalio F, Schlo?macher U, Wiens M, Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials (2009). Appl Microbiol Biotechnol 83:397-13 CrossRef
    12. Mayer G (2009) Role of biosilica in materials science: lessons from siliceous biological systems for structural composites. Progr Mol Subcell Biol 47:277-94 CrossRef
    13. Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B Biointerfaces 103:283-87 CrossRef
    14. Li C-W, Chu S, Lee M (1989) Characterizing the silica deposition vesicle of diatoms. Protoplasma 151:158-63 CrossRef
    15. Brzezinski M A, Conley D J (1994) Silicon deposition during the cell cycle of Thalassiosira weissflogii (Bacillariophyceae) determined using dual rhodamine 123 and propidium iodide staining. J Phycol 30:45-5 CrossRef
    16. Shimizu K, Del Amo Y, Brzezinski M A, Stucky G D, Morse D E (2001) A novel fluorescent silica tracer for biological silification studies. Chem Biol 8:1051-060 CrossRef
    17. Hazelaar S, Van Der Strate H J, Gieskes W W C, Vrieling E G (2005) Monitoring rapid valve formation in the pennate diatom Navicula salinarum (Bacillariophyceae). J Phycol 41:54-8 CrossRef
    18. Desclés J, Vartanian M, AEl Harrak, Quinet M, Bremond N, Sapriel G, Bibette J, Lopez P J (2008) New tools for labeling silica in living diatoms. New Phytol 177:822-29 CrossRef
    19. Kucki M (2009) Biological photonic crystals: diatoms dye functionalization of biological silica nanostructures. University of Kassel, Dissertation
    20. Kucki M, Fuhrmann-Lieker T (2012) Staining diatoms with rhodamine dyes: control of emission colour in photonic biocomposites. J R Soc Interface 9:727-33 CrossRef
    21. Tesson B, Hildebrand M (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso- and micro-scale. PLoS ONE 5:e14300 CrossRef
    22. Ichinomiya M, Gomi Y, Nakamachi M, Ota T, Kobari T (2010) Temporal patterns in silica deposition among siliceous plankton during the spring bloom in the Oyashio region. Deep-Sea Res Pt II 57:1665-670 CrossRef
    23. Ogane K, Tuji A, Suzuki N, Matsuoka A, Kurihara T, Hori R S (2010) Direct observation of the skeletal growth patterns of polycystine radiolarians using a fluorescent marker. Mar Micropaleontol 77:137-44 CrossRef
    24. Aizenberg J, Sundar V C, Yablon A D, Weaver J C, Chen G (2004) Biological glass fibers: Correlation between optical and structural properties. PNAS 101:3358-363 CrossRef
    25. Kulchin Yu N, Bezverbny A V, Bukin O A, Voznesensky S S, Galkina A N, Drozdov A L, Nagorny I G (2009) Optical and nonlinear optical properties of sea glass sponge spicules. Progr Mol Subcell Biol 47:315-40 CrossRef
    26. Annenkov V V, Danilovtseva E N, Zelinskiy S N, Basharina T N, Safonova T A, Korneva E S, Likhoshway YeV, Grachev M A (2010) Novel fluorescent dyes based on oligopropylamines for the / in vivo staining of eukaryotic unicellular algae. Anal Biochem 407:44-1 CrossRef
    27. Annenkov V V, Basharina T N, Danilovtseva E N, Grachev M A (2013) Putative silicon transport vesicles in the cytoplasm of the diatom / Synedra acus during surge uptake of silicon. Protoplasma
    28. Sumper M, Brunner E, Lehmann G (2005) Biomineralization in diatoms: characterization of novel polyamines associated with silica. FEBS Lett 579:3765-769 CrossRef
    29. Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007) Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. ChemBioChem 8:1729-735 CrossRef
    30. Schr?der H-C, Perovi?-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silica transport in the demosponge / Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665-73 CrossRef
    31. Efremova S M (2001) In: Timoshkin OA ed Index of animal species inhabiting Lake Baikal and its catchment area. Nauka, Novosibirsk
    32. Glyzina O Yu, Glyzin A V, Lubotchko S A (2011) Investigation of Baikal hydrosimbionts with pilot aquarian complexes. Water: Chem Ecol 2:35-0. http://watchemec.ru/en/article/23449/
    33. Glyzina O Yu, Glyzin A V, Sukhanova L V, Tyagun M L, Sapojnikova Yu P, Belykh O I, Dzyuba E V, Zaitseva A N, Kulikov V A (2012) Cold-water freshwater aquarian complex for scientific investigations. Water: Chem Ecol 12:78-6. http://watchemec.ru/article/25263/
    34. Suturin A N, Paradina L F, Epov V N, Semenov A R, Lozhkin V I (2002) Development of a standard sample of composition of deep Baikalian water. Chem Sustain Dev 10:473-82
    35. Shimizu K, Cha J, Stucky G D, Morse D E (1998) Silicatein / α: Cathepsin L-like protein in sponge biosilica. PNAS 95:6234-238 CrossRef
    36. Ingalls A E, Whitehead K, Bridoux M C (2010) Tinted windows: The presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms. Geochim Cosmochim Acta 74:104-15 CrossRef
    37. Friedrichs L (2013) A simple cleaning and fluorescent staining protocol for recent and fossil diatom frustules. Diatom Res 28:317-27 CrossRef
    38. Manconi R, Pronzato R (2002) In: Hooper JNA, Van Soest RWM eds Systema Porifera. A guide to the classification of sponges. Kluwer Academic/Plenum Publishers, Dordrecht
  • 作者单位:Vadim V. Annenkov (1)
    Ol’ga Yu. Glyzina (1)
    Ol’ga N. Verkhozina (1)
    Elena N. Danilovtseva (1)

    1. Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk, 664033, Russia
  • ISSN:1876-9918
文摘
Siliceous sponges (Hexactinellida and Demospongiae classes) are aquatic invertebrates which are important both for marine and freshwater ecology and also as the source of biologically active compounds. The sponge skeleton consists of spicules - needle-like or branched composite structures based on silicon dioxide. Mechanisms of silicon assimilation and synthesis of high-ordered glass-like structures at ambient temperatures by sponges are intriguing for biologists, chemists and nanotechnologists. Fluorescent amines are in-vivo dyes that stain growing siliceous frustules of diatom algae so the use of these agents for the sponge study was attempted. We found that cultivation of the Lubomirskia baicalensis (Pallas, 1773) sponge in the presence of fluorescent tracers of biosilica - N1,N3,N3-trimethyl-N1-(7-nitro-2,1,3- benzoxadiazol-4-yl)propane-1,3-diamine and N1,N3-dime thyl-N1-[3-(dimethylamino)propyl]-N3-(7-nitro-2,1,3-benz oxadiazo-4yl)propane-1,3-diamine results in the staining of growing siliceous spicules. This finding shows that amine dyes accompany silicon from the environment to sponges spicules which opens a new way to study of silicon assimilation by sponges. Fluorescent staining of the growing spicules following with the confocal microscopy can be a powerful tool for morphological studies, revealing information about the dynamics of spiculogenesis and for bio-fabrication of new fluorescent materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700