Knudsen Diffusion Through Cylindrical Tubes of Varying Radii: Theory and Monte Carlo Simulations
详细信息    查看全文
  • 作者:Yong Shi (1) yongshi@hawaii.edu
    Yong Taek Lee (2) yongtlee@khu.ac.kr
    Albert S. Kim (12) albertsk@hawaii.edu
  • 关键词:Knudsen transport &#8211 ; Periodic tube &#8211 ; Transmission probability &#8211 ; Integral equation theory &#8211 ; Monte Carlo simulation
  • 刊名:Transport in Porous Media
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:93
  • 期:3
  • 页码:517-541
  • 全文大小:789.6 KB
  • 参考文献:1. Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)
    2. Bhatia S., Nicholson D.: Some pitfalls in the use of the Knudsen equation in modelling diffusion in nanoporous materials. Chem. Eng. Sci. 66(3), 284–293 (2011)
    3. Bhatia S.K., Jepps O., Nicholson D.: Tractable molecular theory of transport of Lennard–Jones fluids in nanopores. J. Chem. Phys. 120(9), 4472 (2004)
    4. Bosanquet, C.H.B.: British TA Rept, pp BR–507 (1944)
    5. Brunauer S., Emmett P.H., Teller E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)
    6. Budd P.M., McKeown N.B., Fritsch D.: Free volume and intrinsic microporosity in polymers. J. Mater. Chem. 15, 1977–1986 (2005)
    7. Calabro V., Jiao B., Drioli E.: Theoretical and experimental study on membrane distillation in the concentration of orange juice. Ind. Eng. Chem. Res. 33(7), 1803–1808 (1994)
    8. Clausing P.: Uber die stromung sehr verdunnter gase durch rohren von beliebiger lange. Ann. Phys. (Leipzig) 12, 961–989 (1932)
    9. Clausing P.: The flow of highly rarefied gases through tubes of arbitrary length. J. Vac. Sci. Technol. 8(5), 636–756 (1971)
    10. Curcio E., Drioli E.: Membrane distillation and related operations—a review. Sep. Purif. Rev. 34(1), 35–86 (2005)
    11. Davis D.H.: Monte Carlo calculation of molecular flow rates through a cylindrical elbow and pipes of other shapes. J. Appl. Phys. 31(7), 1169–1176 (1960)
    12. Diban N., Voinea O., Urtiaga A., Ortiz I.: Vacuum membrane distillation of the main pear aroma compound: experimental study and mass transfer modeling. J. Membr. Sci. 326(1), 64–75 (2009)
    13. Ermak D.L., Mccammon J.A.: Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69(4), 1352–1360 (1978)
    14. Evans R. III, Watson G., Mason E.: Gaseous diffusion in porous media at uniform pressure. J. Chem. Phys. 35(6), 2076–2083 (1961)
    15. Evans R. III, Watson G., Mason E.: Gaseous diffusion in porous media. II. Effect of pressure gradients. J. Chem. Phys. 36(7), 1894–1902 (1962)
    16. Flory C.A., Cutler L.S.: Integral equation solution of low-pressure transport of gases in capillary tubes. J. Appl. Phys. 73(4), 1561–1569 (1993)
    17. Haddad O.M., Abuzaid M.M.: Effect of periodically oscillating driving force on basic microflows in porous media. J. Porous Media 9(7), 695–707 (2006)
    18. Haddad O.M., Abuzaid M.M., Al-Nimr M.A.: Developing free-convection gas flow in a vertical open-ended microchannel filled with porous media. Numer. Heat Transf. A 48(7), 693–710 (2005)
    19. Haddad O.M., Al-Nimr M.A., Taamneh Y.: Hydrodynamic and thermal behavior of gas flow in microchannels filled with porous media. J. Porous Media 9(5), 403–414 (2006)
    20. Haddad O.M., Al-Nimr M., Al-Omary J.: Forced convection of gaseous slip-flow in porous micro-channels under Local Thermal Non-Equilibrium conditions. Transp. Porous Media 67(3), 453–471 (2007)
    21. Iczkowski R.P., Iczkowski R.P., Margrave J.L., Margrave J.L., Robinson S.M., Robinson S.M.: Effusion of gases through conical orifices. J. Phys. Chem. 67(2), 229–233 (1963)
    22. Karniadakis G., Beskok A.: Micro Flows—Fundamentals and Simulation. Springer, New York (2002)
    23. Knudsen M.: Die gesetze der molekularstr枚mung und der inneren reibungsstr枚mung der gase durch r枚hren. Ann. Phys. 333(1), 75–130 (1909)
    24. Knudsen M., Fisher W.: The molecular and the frictional flow of gases in tubes. Phys. Rev. (Ser. I) 31(5), 586–588 (1910)
    25. Kogan A.: Direct solar thermal splitting of water and on-site separation of the products–ii. experimental feasibility study. Int. J. Hydrogen Energy 23(2), 89–98 (1998)
    26. Krishna R., van Baten J.M.: A molecular dynamics investigation of the unusual concentration dependencies of Fick diffusivities in silica mesopores. Micropor. Mesopor. Mater. 138(1-3), 228–234 (2011)
    27. Lawson K.W., Lloyd D.R.: Membrane distillation. II. Direct contact MD. J. Membr. Sci. 120(1), 123–133 (1996)
    28. Lim Y.I., Bhatia S.: Simulation of methane permeability in carbon slit pores. J. Membr. Sci. 369(1-2), 319–328 (2011)
    29. Mason E., Malinauskas A., Evans R. III: Flow and diffusion of gases in porous media. J. Chem. Phys. 46(8), 3199–3216 (1967)
    30. Mulder M.: Basic Principles of Membrane Technology. 2nd edn. Kluwer, Dordecht (1996)
    31. Park H.B., Jung C.H., Lee Y.M., Hill A.J., Pas S.J., Mudie S.T., Wagner E.V., Freeman B.D., Cookson D.J.: Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318(5848), 254–258 (2007)
    32. Pollard W.G., Present R.D.: On gaseous self-diffusion in long capillary tubes. Phys. Rev. 73(7), 762–774 (1948)
    33. Present R.D., De Bethune A.J.: Separation of a gas mixture flowing through a long tube at low pressure. Phys. Rev. 75(7), 1050–1057 (1949)
    34. Qtaishat M., Matsuura T., Kruczek B., Khayet M.: Heat and mass transfer analysis in direct contact membrane distillation. Desalination 219(1-3), 272–292 (2008)
    35. Reif F.: Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York (1965)
    36. Reynolds, T.W., Richley, E.A.: Flux patterns resulting from free-molecule flow through converging and diverging slots. NASA Tech Note TN D-1864, pp 1–69 (1964)
    37. Reynolds, T.W., Richley, E.A.: Free molecule flow and surface diffusion through slots and tubes—a summary. NASA Technical Report TR R-255 (1967)
    38. Richley, E.A., Reynolds, T.W.: Numerical solutions of free-molecule flow in converging and diverging tubes and slots. NASA Tech Note TN D-2330, pp 1–45 (1964)
    39. Ruthven D.M., Desisto W.J., Higgins S.: Diffusion in a mesoporous silica membrane: validity of the Knudsen diffusion model. Chem. Eng. Sci. 64, 3201–3203 (2009)
    40. Steckelmacher W.: Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems. Rep. Prog. Phys. 49, 1083–1107 (1986)
    41. Talley W.K., Whitaker S.: Monte Carlo analysis of Knudsen flow. J. Comput. Phys. 4(3), 389–410 (1969)
    42. Villani S.: Isotope Separation. American Nuclear Society, Hinsdale (1976)
    43. Walsh J.W.T.: Radiation from a perfectly diffusing circular disc (part I). Proc. Phys. Soc. Lond. 32, 59–71 (1919)
    44. Zhang J., Gray S., Li J.D.: Modelling heat and mass transfers in DCMD using compressible membranes. J. Membr. Sci. 387(388), 7–16 (2012)
  • 作者单位:1. Civil and Environmental Engineering, University of Hawaii at Manoa, 2540 Dole Street, Honolulu, HI 96822, USA2. Chemical Engineering, College of Engineering, Kyung Hee University, Gyeonggi-do, 449-701 South Korea
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
In this study, Knudsen diffusion of low-pressure gases of infinite mean free path through various tubes is studied using the integral equation theory (IET), standard diffusion theory, and Monte Carlo (MC) simulations. We investigated the transmission probabilities (TPs) of linearly diverging–converging, sinusoidally bulging, and periodic tubes as compared with TPs of conventional straight cylinders. An exact analytic solution for the TP through the straight cylindrical tube was developed using the standard diffusion theory with a linear concentration approximation. IET for the TPs through the diverging–converging and bulging tubes were developed. MC simulation techniques were applied to calculate TPs through all the tube types azimuthal symmetry of which was held with tube radius changing only along the axial coordinate (z). The linearly diverging–converging and sinusoidally bulging tubes provide noticeably higher TPs than those of the equivalent straight tubes. Periodic tubes show that if the tube length scaled by the equivalent diameter is of an order of or greater than the periodicity coefficient (equal to the number of peaks on the tube wall), then the TP of the periodic tube is larger than that of the equivalent straight tube.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700