Total antioxidant capacity of honeybee haemolymph in relation to age and exposure to pesticide, and comparison to antioxidant capacity of seminal plasma
详细信息    查看全文
  • 作者:Mariola Słowińska ; Joanna Nynca ; Jerzy Wilde ; Beata Bąk ; Maciej Siuda…
  • 关键词:Apis mellifera ; total antioxidant capacity ; haemolymph ; ageing ; pesticide
  • 刊名:Apidologie
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:47
  • 期:2
  • 页码:227-236
  • 全文大小:708 KB
  • 参考文献:Alaux, C., Folschweiller, M., McDonnell, C., Beslay, D., Cousin, M., Dussaubat, C., Brunet, J.L., Le Conte, Y. (2011) Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). J. Invertebr. Pathol. 106(3), 380–385CrossRef PubMed <br>Cobey, S.W., Tarpy, D.R., Woyke, J. (2013) Standard methods for instrumental insemination of Apis mellifera queens. J. Apic. Res. 52(4), 1–18CrossRef <br>Collins, A.M., Williams, V., Evans, J.D. (2004) Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Mol. Biol. 13(2), 141–146CrossRef PubMed <br>Collins, A.M., Caperna, T.J., Williams, V., Garrett, W.M., Evans, J.D. (2006) Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect Mol. Biol. 15(5), 541–549PubMedCentral CrossRef PubMed <br>Colven, R.M., Pinnell, S.R. (1996) Topical vitamin C in aging. Clin. Dermatol. 14(2), 227–234CrossRef PubMed <br>Corona, M., Robinson, G.E. (2006) Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol. Biol. 15(5), 687–701PubMedCentral CrossRef PubMed <br>De Jong, D., da Silva, E.J., Kevan, P.G., Atkinson, J.L. (2009) Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen. J. Apic. Res. 48(1), 34–37CrossRef <br>Derecka, K., Blythe, M.J., Malla, S., Genereux, D.P., Guffanti, A., et al. (2013) Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One 8(7), 1–11CrossRef <br>Eckholm, B.J., Huang, M.H., Anderson, K.E., Mott, B.M., Hoffman, G.D. (2015) Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status. Apidologie 46(2), 150–163CrossRef <br>Farjan, M., Dmitryjuk, M., Lipinski, Z., Biernat-Lopienska, E., Zoltowska, K. (2012) Supplementation of the honey bee diet with vitamin C: The effect on the antioxidative system of Apis mellifera carnica brood at different stages. J. Apic. Res. 51(3), 263–270CrossRef <br>Farjan, M., Łopieńska-Biernat, E., Lipiński, Z., Dmitryjuk, M., Żółtowska, K. (2014) Supplementing with vitamin C the diet of honeybees (Apis mellifera carnica) parasitized with Varroa destructor: effects on antioxidative status. Parasitology 141(6), 770–776CrossRef PubMed <br>Felton, G.W. (1995) Antioxidant defenses of invertebrates and vertebrates. In: Ahmad, S. (ed.) Oxidative stress and antioxidant defenses in biology, pp. 356–434. Chapman & Hall, New YorkCrossRef <br>Felton, G.W., Summers, C.B. (1995) Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29(2), 187–197CrossRef PubMed <br>Fluri, P., Lüscher, M., Wille, H., Gerig, L. (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 28(1), 61–68CrossRef <br>Gündüz, F., Sentürk, U.K., Kuru, O., Aktekin, B., Aktekin, M.R. (2004) The effect of one year’s swimming exercise on oxidant stress and antioxidant capacity in aged rats. Physiol. Res. 53(2), 171–176PubMed <br>Ilboudoa, S., Fouchea, E., Rizzatia, V., Toéb, A.M., Gamet-Payrastrea, L., Guissoub, P.I. (2014) In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2. Toxicol. Rep. 1, 474–489CrossRef <br>Jimenez, D.R., Gilliam, M. (1996) Peroxisomal enzymes in the honey bee midgut. Arch. Insect Biochem. Physiol. 31(1), 87–103CrossRef <br>Johnson, B., Carey, J.R. (2014) Hierarchy and connectedness as determinants of health and longevity in social insects. In: Weinstein, M., Lane, M.A. (eds.) Sociality, hierarchy, health: comparative biodemography: a collection of papers, pp. 269–295. National Academies Press, Washington<br>Kakarla, P., Vadluri, G., Reddy Kesireddy, S. (2005) Response of hepatic antioxidant system to exercise training in aging female rat. J. Exp. Zool. A. Comp. Exp. Biol. 303(3), 203–208CrossRef PubMed <br>Krishnan, N., Kodrík, D., Kłudkiewicz, B., Sehnal, F. (2009) Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol. 39(3), 180–188CrossRef PubMed <br>Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275PubMed <br>Melov, S., Ravenscroft, J., Malik, S., Gill, M.S., Walker, D.W., et al. (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289(5484), 1567–1569CrossRef PubMed <br>Michelette, E., Engels, W. (1995) Concentration of hemolymph proteins during postembryonic worker development of Africanized honey bees in Brazil and Carniolans in Europe. Apidologie 26(2), 101–108CrossRef <br>Michiels, C., Raes, M., Toussaint, O., Remacle, J. (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic. Biol. Med. 17(3), 235–248CrossRef PubMed <br>Pardini, R.S. (1995) Toxicity of oxygen from naturally occurring redox-active pro-oxidants. Arch. Insect Biochem. Physiol. 29(2), 101–118CrossRef PubMed <br>Pohorecka, K., Skubida, P., Miszczak, A., Semkiw, P., Sikorski, P. (2012) Residues of neonicotinoid insecticides in bee collected plant materials from oilseed rape crops and their effect on bee colonies. J. Apic. Sci. 56(2), 115–134<br>Poljšak, B., Fink, R. (2014) The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution oxidative medicine and cellular longevity. Oxidative Med. Cell. Longev. . doi:10.​1155/​2014/​671539 <br>Rao, G., Xia, E., Richardson, A. (1990) Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech. Ageing Dev. 53(1), 49–60CrossRef PubMed <br>Schippers, M.P., Dukas, R., Smith, R.W., Wang, J., Smolen, K., McClelland, G.B. (2006) Lifetime performance in foraging honeybees: behaviour and physiology. J. Exp. Biol. 209, 3828–3836CrossRef PubMed <br>Sohal, R.S., Arnold, L.A., Sohal, B.H. (1990) Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radic. Biol. Med. 9(6), 495–500CrossRef PubMed <br>Strachecka, A., Olszewski, K., Paleolog, J., Borsuk, G., Bajda, M., Krauze, M., Merska, M., Chobotow, J. (2014) Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera. Arch. Insect Biochem. Physiol. 86(3), 165–179CrossRef PubMed <br>Strachecka, A.J., Olszewski, K., Paleolog, J. (2015) Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. J. Apic. Sci. 59(1), 129–141<br>Suchail, S., Debrauwer, L., Belzunces, L.P. (2004) Metabolism of imidacloprid in Apis mellifera. Pest Manag. Sci. 60(3), 291–296CrossRef PubMed <br>Summers, C.B., Felton, G.W. (1993) Antioxidant role of dehydroascorbic acid reductase in insects. Biochim. Biophys. Acta 1156(2), 235–238CrossRef PubMed <br>Vaanholt, L.M., Speakman, J.R., Garland Jr., T., Lobley, G.E., Visser, G.H. (2008) Protein synthesis and antioxidant capacity in aging mice: effects of long-term voluntary exercise. Physiol. Biochem. Zool. 81(2), 148–157CrossRef PubMed <br>Weirich, G.F., Collins, A.M., Williams, W.P. (2002) Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33(1), 3–14CrossRef <br>Williams, J.B., Roberts, S.P., Elekonich, M.M. (2008) Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp. Gerontol. 43(6), 538–549CrossRef PubMed <br>
  • 作者单位:Mariola Słowińska (1) <br> Joanna Nynca (1) <br> Jerzy Wilde (2) <br> Beata Bąk (2) <br> Maciej Siuda (2) <br> Andrzej Ciereszko (1) <br><br>1. Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland <br> 2. Department of Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 48, 10-957, Olsztyn, Poland <br>
  • 刊物主题:Entomology; Life Sciences, general;
  • 出版者:Springer Paris
  • ISSN:1297-9678
文摘
Oxidative stress is defined as a disturbance in the balance between the production of reactive oxygen species and antioxidant defences. We measured total antioxidant capacity (TAC) in honeybee haemolymph and seminal plasma and analysed TAC of haemolymph in relation to age and exposure to pesticide. TAC of haemolymph increased with age of bees (1.18 vs 1.97 mM of (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) for 1- and 30-day-old bees, respectively, P ≤ 0.05). Exposure to imidacloprid (IMD) affected TAC of haemolymph of 1-day-old but not 30-day-old honeybees. TAC in haemolymph of 1-day-old bees was lower in treatments with the addition of 5 and 200 ppb IMD (1.57–1.46 mM of Trolox in treated bees compared with 2.37 mM of Trolox in controls; P ≤ 0.05). In conclusion, antioxidant protection of honeybees seems to be related to age and may be disturbed by exposure to IMD. Older bees with higher antioxidant protection seem to be less susceptible to IMD toxicity. The toxic effect of pesticide seems to be particularly dangerous in early life stages of honeybees.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700