Sedimentary recycling in arc magmas: geochemical and U–Pb–Hf–O constraints on the Mesoproterozoic Suldal Arc, SW Norway
详细信息    查看全文
  • 作者:Nick M. W. Roberts (1) (2)
    Trond Slagstad (3)
    Randall R. Parrish (1) (2)
    Michael J. Norry (1)
    Mogens Marker (3)
    Matthew S. A. Horstwood (2)
  • 关键词:Fennoscandia ; Zircon ; Arc magmatism ; Crustal recycling ; Hf–O isotopes
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:165
  • 期:3
  • 页码:507-523
  • 全文大小:1141KB
  • 参考文献:1. ?h?ll K-I, Connelly JN (2008) Long-term convergence along SW Fennoscandia: 330?m.y. of Proterozoic crustal growth. Precambr Res 161:452-74 CrossRef
    2. ?h?ll K-I, Cornell DH, Armstrong RA (1998) Ion probe dating of metasedimentary units across the Skagerrak: new constraints for early Mesoproterozoic growth of the Baltic Shield. Precambr Res 87:117-34 CrossRef
    3. Andersen T (1997) Radiogenic isotope systematics of the Herefoss granite, South Norway: an indicator of Sveconorwegian (Grenvillian) crustal evolution in the Baltic Shield. Chem Geol 135:139-58 CrossRef
    4. Andersen T (2005) Terrane analysis, regional nomenclature and crustal evolution in the Southwest Scandinavian Domain of the Fennoscandian Shield. GFF 127:159-68
    5. Andersen T, Griffin WL (2004) Lu-Hf and U-Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland Intrusive Complex, SW Norway: implications for the composition and evolution of Precambrian lower crust in the Baltic Shield. Lithos 73:271-88 CrossRef
    6. Andersen T, Andresen A, Sylvester AG (2001) Nature and distribution of deep crustal reservoirs in the southwestern part of the Baltic Shield: evidence from Nd, Sr and Pb isotope data on late Sveconorwegian granites. J Geol Soc Lond 158:253-67 CrossRef
    7. Andersen T, Andresen A, Sylvester AG (2002a) Timing of late- to post-tectonic Sveconorwegian granitic magmatism in South Norway. NGU Bull 440:5-8
    8. Andersen T, Griffin WL, Pearson NJ (2002b) Crustal Evolution in the SW part of the Baltic Shield: the Hf Isotope Evidence. J Petrol 43:1725-747 CrossRef
    9. Andersen T, Griffin WL, Jackson SE, Knudsen T-L, Pearson NJ (2004a) Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield. Lithos 73:289-18 CrossRef
    10. Andersen T, Laajoki K, Saeed A (2004b) Age, provenance and tectonostratigraphic status of the Mesoproterozoic Blefjell quartzite, Telemark sector, southern Norway. Precambr Res 135:217-44 CrossRef
    11. Andersen T, Graham S, Sylvester AG (2007a) Timing and tectonic significance of Sveconorwegian A-type granitic magmatism in Telemark, southern Norway: New results from laser-ablation ICPMS U-Pb dating of zircon. NGU Bull 447:17-1
    12. Andersen T, Griffin WL, Sylvester AG (2007b) Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U–Pb and Lu–Hf isotope evidence from granites and gneisses in Telemark, southern Norway. Lithos 93:273-87 CrossRef
    13. Andersen T, Andersson UB, Graham S, ?berg G, Simonsen SL (2009a) Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. J Geol Soc 166:233-47 CrossRef
    14. Andersen T, Graham S, Sylvester AG (2009b) The geochemistry, Lu–Hf isotope systematics, and petrogenesis of Late Mesoproterozoic A-type granites in southwestern Fennoscandia. Can Mineral 47:1399-422 CrossRef
    15. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505-39 CrossRef
    16. Appleby SK, Graham CM, Gillespie MR, Hinton RW, Oliver GJH EIMF (2008) A cryptic record of magma mixing in diorites revealed by high-precision SIMS oxygen isotope analysis of zircons. Earth Planet Sci Lett 269:105-17 CrossRef
    17. Appleby SK, Gillespie MR, Graham CM, Hinton RW, Oliver GJH, Kelly NM (2010) Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U–Pb and Hf isotope study of zircon. Contrib Mineral Petrol, 160:115-32
    18. Armstrong RL (1971) Isotopic and chemical constraints on models of magma genesis in volcanic arcs. Earth Planet Sci Lett 12:137-42 CrossRef
    19. Auer S, Bindeman I, Wallace P, Ponomareva V, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157:209-30 CrossRef
    20. Be’eri-Shlevin Y, Katzir Y, Valley JW (2009) Crustal evolution and recycling in a juvenile continent: oxygen isotope ratio of zircon in the northern Arabian Nubian Shield. Lithos 107:169-84 CrossRef
    21. Bickford ME, Mueller PA, Kamenov GD, Hill BM (2008) Crustal evolution of southern Laurentia during the Paleoproterozoic: insights from zircon Hf isotopic studies of ca. 1.75?Ga rocks in central Colorado. Geology 36:555-58 CrossRef
    22. Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim Cosmochim Acta 68:841-65 CrossRef
    23. Bingen B, Van Breemen O (1998) Tectonic regimes and terrane boundaries in the high-grade Sveconorwegian belt of SW Norway, inferred from U–Pb zircon geochronology and geochemical signature of augen gneiss suites. J Geol Soc Lond 155:143-54 CrossRef
    24. Bingen B, Birkeland A, Nordgulen ?, Sigmond EMO (2001) Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments. Precambr Res 108:293-18 CrossRef
    25. Bingen B, Mansfeld J, Sigmond EMO, Stein HJ (2002) Baltica-Laurentia link during the Mesoproterzoic: 1.27?Ga development of continental basins in the Sveconorwegian Orogen, southern Norway. Can J Earth Sci 39:1425-440 CrossRef
    26. Bingen B, Nordgulen ?, Sigmond EMO, Tucker R, Mansfeld J, H?gdahl K (2003) Relations between 1.19-1.13?Ga continental magmatism, sedimentation and metamorphism, Sveconorwegian province, S Norway. Precambr Res 124:215-41 CrossRef
    27. Bingen B, Sk?r ?, Marker M, Sigmond EMO, Nordgulen ?, Ragnhildstveit J, Mansfeld J, Tucker RD, Liégeois J-P (2005) Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Nor Geol Tidsskr 85:87-05
    28. Bingen B, Andersson J, S?derlund U, M?ller C (2008a) The Mesoproterozoic in the Nordic countries. Episodes 31:29-4
    29. Bingen B, Davis WJ, Hamilton MA, Engvik AK, Stein HJ, Sk?r ?, Nordgulen ? (2008b) Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U–Pb, Th–Pb and Re–Os data. Nor Geol Tidsskr 88:13-2
    30. Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD, Cole JW (2006) Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet Sci Lett 268:312-24 CrossRef
    31. Brewer TS, Daly JS, ?h?ll K-I (1998) Contrasting magmatic arcs in the Palaeoproterozoic of the south-western Baltic Shield. Precambr Res 92:297-15 CrossRef
    32. Brewer TS, ?h?ll K-I, Menuge JF, Storey CD, Parrish RR (2004) Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pr-Sveconorwegian continental margin tectonism. Precambr Res 134:249-73 CrossRef
    33. Brophy JG (2008) A study of rare earth element (REE)-SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib Mineral Petrol 156:337-57 CrossRef
    34. Cawood PA, Kr?ner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. In: Cawood PA, Kr?ner A (eds) Earth accretionary systems in space and time. Geological Society of London, Special Publication 318, pp 1-6
    35. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173-74
    36. Chauvel C, Marini J-C, Plank T, Ludden JN (2009) Hf–Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochem Geophys Geosyst 10:Q01001. doi:10.1029/2008GC002101 CrossRef
    37. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469-00 CrossRef
    38. Dahlgren S, Heaman L, Krogh T (1990) Geological evolution and U–Pb geochronology of the Proterozoic central Telemark area, Norway. Geonytt 17:38-9
    39. Davidson J (1985) Mechanisms of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationships. Earth Planet Sci Lett 72:163-74 CrossRef
    40. de Haas GJLM, Andersen T, Vestin J (1999) Detrital zircon geochronology: new evidence for an old model for accretion of the SW Baltic Shield. J Geol 107:569-86 CrossRef
    41. DeCelles PG, Ducea MH, Kapp P, Zandt G (2009) Cyclicity in Cordilleran orogenic systems. Nat Geosci 2:251-57 CrossRef
    42. Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6:Q07007. doi:10.1029/2004GC000804 CrossRef
    43. Ernst WG (2009) Archean platetectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res 15:243-53 CrossRef
    44. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033-048 CrossRef
    45. Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambr Res 35:15-2 CrossRef
    46. Gasparon M, Hilton DR, Varne R (1994) Crustal contamination processes traced by helium isotopes: examples from the Sunda arc, Indonesia. Earth Planet Sci Lett 126:15-2 CrossRef
    47. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York, pp 1-90
    48. Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133-47 CrossRef
    49. Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307:501-16 CrossRef
    50. Hamilton WB (2010) Plate tecotonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1-0 CrossRef
    51. Hawkesworth CJ, O’Nions RK, Arculus RJ (1979) Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth Planet Sci Lett 45:237-48 CrossRef
    52. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Miner Petrol 98:455-89 CrossRef
    53. H?gdahl K, Andersson UB, Eklund O (2004) The transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Spec Paper Geol Surv Finl 37:1-25
    54. James DE (1981) The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annu Rev Earth Planet Sci 15:395-96
    55. Johnson ER, Wallace PJ, Granados HD, Manea VC, Kent AJK, Bindeman IN, Donegan CS (2009) Subduction-related volatile recycling and magma generation beneath central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol 50:1729-764 CrossRef
    56. Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315:980-83 CrossRef
    57. Kemp AIS, Hawkesworth CJ, Collins WJ, Gray CM, Blevin PL (2009) Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet Sci Lett 284:455-66 CrossRef
    58. Korja A, Lahtinen R, Nironen M (2006) The Svecofennian orogen: a collage of microcontinents and island arcs. In: Gee DG, Stephenson RA (eds) European Lithosphere Dynamics. Geological Society of London Memoirs 32, pp 561-78
    59. Laajoki K, Corfu F, Andersen T (2002) Lithostratigraphy and U–Pb geochronology of the Telemark supracrustals in the Bandal-Sauland area, Telemark, South Norway. Norw J Geol 82:119-38
    60. Lackey JS, Valley JW, Saleeby JB (2005) Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet Sci Lett 235:315-30 CrossRef
    61. Lahtinen R, Korja A, Nironen M, Heikkinen P (2009) Palaeoproterozoic accretionary processes in Fennoscandia. In: Cawood PA, Kr?ner A (eds) Earth accretionary systems in space and time. Geological Society of London, Special Publication 318, pp 237-56
    62. Lamminen J, K?ykk? J (2010) The provenance and evolution of the Rjukan Rift Basin, Telemark, south Norway: the shift from a rift basin to an epicontinental sea along a Mesoproterozoic supercontinent. Precambr Res 181:129-49 CrossRef
    63. Lee C-TA, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights form the Sierra Nevada, California. Contrib Miner Petrol 151:222-42 CrossRef
    64. Lee C-TA, Mortin DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263:370-87 CrossRef
    65. Martin E, Bindeman I, Grove TL (2011) The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction. Contrib Mineral Petrol 162:945-60 CrossRef
    66. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites: implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529-32 CrossRef
    67. Nebel O, Vroon PJ, van Westrenen W, Iizuka T, Davies GR (2011) The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Earth Planet Sci Lett 303:240-50 CrossRef
    68. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing Limited, Cheshire, pp 230-49
    69. Peck WH, Valley JW, Corriveau L, Davidson A, McLelland J, Farber DA (2004) Oxygen-isotope constraints on terrane boundaries and origin of 1.18-1.13?Ga granitoids in the southern Grenville Province. In: Tollo RP, Corriveau L, McLelland J, Bartholomew MJl (eds) Proterozoic Tectonic Evolution of the Grenville Orogen in North America. Geological Society of America Memoir 197, pp 163-82
    70. Pedersen S, Andersen T, Konnerup-Madsen J, Griffin WL (2009) Recurrent Mesoproterozoic continental magmatism in South-Central Norway. Int J Earth Sci 98:1151-171 CrossRef
    71. Plank T, Langmuir CH (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362:739-43 CrossRef
    72. Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53-9 CrossRef
    73. Roberts NMW, Parrish RR, Horstwood MSA, Brewer T (2011) The 1.23?Ga Fjellhovdane rhyolite, Gr?ss?-Totak; a new age within the Telemark supracrustals, southern Norway. Norw J Geol 91:239-46
    74. Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1-4 CrossRef
    75. Saito S, Arima M, Nakajima T, Tani K, Miyazaki T, Senda R, Chang Q, Takahashi T, Hirahara Y, Kimura J-I (2012) Petrogenesis of the Kaikomagatake granitoids pluton in the Izu Collision Zone, central Japan: implications for transformation of juvenile oceanic arc into mature continental crust. Contrib Mineral Petrol 163:611-29 CrossRef
    76. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochemi Geophys Geosyst 5:Q05B07. doi:10.1029/2003GC000597 CrossRef
    77. Sch?rer U, Wilmart E, Duchesne J-C (1996) The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth Planet Sci Lett 139:335-50 CrossRef
    78. Shirey SB, Richardson SH (2011) Start of the Wilson Cycle at 3?Ga Shown by diamonds from subcontinental mantle. Science 333:434-36 CrossRef
    79. Sigmond EMO (1975) Geologisk kart over Norge, berggrunnskart Sauda, 1:250000. Geological Survey of Norway, Trondheim
    80. Sigmond EMO (1978) Beskrivelse til det berggrunnsgeologiske kartbladet Sauda 1:250000. NGU Bull 341:1-4
    81. Simon L, Lécuyer C (2005) Continental recycling: the oxygen isotope point of view. Geochem Geophys Geosyst 6:Q08004. doi:10.1029/2005GC000958 CrossRef
    82. Slagstad T, Culshaw NG, Daly JS, Jamieson RA (2009) Western Grenville Province holds key to midcontinental Granite-Rhyolite Province enigma. Terra Nova 21:181-87 CrossRef
    83. Slagstad T, Roberts NMW, Marker M, R?hr T, Schiellerup H (2012) A non-collisional, accretionary Sveconorwegian orogen. Terra Nova. doi:10.1111/ter.12001
    84. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society of London, Special Publication 42, pp 313-45
    85. Thirlwall MF, Graham AM (1984) Evolution of high-Ca, high-Sr C-series basalts from Grenada, Lesser Antilles: the effects of intra-crustal contamination. J Geol Soc 141:427-45 CrossRef
    86. Tollstrup D, Gill J, Kent A, Prinkey D, Williams R, Tamura Y, Ishizuka O (2010) Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited. Geochem Geophys Geosyst 11:Q01X10. doi:10.1029/2009GC002847 CrossRef
    87. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1-1 CrossRef
    88. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561-80 CrossRef
    89. Vander Auwera J, Bolle O, Bingen B, Liégeois J-P, Bogaerts M, Duchesne JC, De Waele B, Longhi J (2011) Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth Sci Rev 107:375-97 CrossRef
    90. Vroon PZ, Lowry D, Van Bergen MJ, Boyce AJ, Mattey DP (2001) Oxygen isotope systematics of the Banda Arc: Low δ18O despite involvement of subducted continental material in magma genesis. Geochim Cosmochim Acta 65:589-09 CrossRef
    91. Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Trans R Soc Edinb Earth Sci 87:43-6 CrossRef
    92. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295-04 CrossRef
    93. Wetmore PH, Ducea MN (2011) Geochemical evidence of a near-surface history for source rocks of the central Coast Mountains Batholith, British Columbia. Int Geol Rev 53:230-60 CrossRef
  • 作者单位:Nick M. W. Roberts (1) (2)
    Trond Slagstad (3)
    Randall R. Parrish (1) (2)
    Michael J. Norry (1)
    Mogens Marker (3)
    Matthew S. A. Horstwood (2)

    1. Department of Geology, University of Leicester, Leicester, LE1 7RH, UK
    2. NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham, NG12 5GG, UK
    3. Geological Survey of Norway, 7491, Trondheim, Norway
  • ISSN:1432-0967
文摘
The Hardangervidda-Rogaland Block within southwest Norway is host to ~1.52 to 1.48?Ga continental building and variable reworking during the ~1.1 to 0.9 Ga Sveconorwegian orogeny. Due to the lack of geochronological and geochemical data, the timing and tectonic setting of early Mesoproterozoic magmatism has long been ambiguous. This paper presents zircon U–Pb–Hf–O isotope data combined with whole-rock geochemistry to address the age and petrogenesis of basement units within the Suldal region, located in the centre of the Hardangervidda-Rogaland Block. The basement comprises variably deformed grey gneisses and granitoids that petrologically and geochemically resemble mature volcanic arc lithologies. U–Pb ages confirm that magmatism occurred from ~1,521 to 1,485?Ma, and conspicuously lack any xenocrystic inheritance of distinctly older crust. Hafnium isotope data range from εHf(initial) +1 to +11, suggesting a rather juvenile magmatic source, but with possible involvement of late Palaeoproterozoic crust. Oxygen isotope data range from mantle-like (δ18O ~5?- to elevated (~10?- suggesting involvement of low-temperature altered material (e.g., supracrustal rocks) in the magma source. The Hf–O isotope array is compatible with mixing between mantle-derived material with young low-temperature altered material (oceanic crust/sediments) and older low-temperature altered material (continent-derived sediments). This, combined with a lack of xenoliths and xenocrysts, exposed older crust, AFC trends and S-type geochemistry, all point to mixing within a deep-crustal magma-generation zone. A proposed model comprises accretion of altered oceanic crust and the overlying sediments to a pre-existing continental margin, underthrusting to the magma-generation zone and remobilisation during arc magmatism. The geodynamic setting for this arc magmatism is comparable with that seen in the Phanerozoic (e.g., the Sierra Nevada and Coast Range batholiths), with compositions in the Suldal Sector reaching those of average upper continental crust. As within these younger examples, factors that drive magmatism towards the composition of the average continental crust include the addition of sedimentary material to magma source regions, and delamination of cumulate material. Underthrusting of sedimentary materials and their subsequent involvement in arc magmatism is perhaps a more widespread mechanism involved in continental growth than is currently recognised. Finally, the Suldal Arc magmatism represents a significant juvenile crustal addition to SW Fennoscandia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700