Single-RF MIMO-OFDM system with beam switching antenna
详细信息    查看全文
  • 作者:Illsoo Sohn ; Donghyuk Gwak
  • 关键词:Multiple input multiple output ; Beam switching antenna ; Single ; RF MIMO receiver ; Spread spectrum ; Co ; channel interference
  • 刊名:EURASIP Journal on Wireless Communications and Networking
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:2016
  • 期:1
  • 全文大小:2,206 KB
  • 参考文献:1.A Goldsmith, SA Jafar, N Jindal, S Vishwanath, Capacity limits of MIMO channels. IEEE J. Sel. Areas Commun. 21(5), 684–702 (2003).CrossRef
    2.G Caire, S Shamai, On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. Inf. Theory. 49(7), 1691–1706 (2003).CrossRef MathSciNet MATH
    3.P Viswanath, D Tse, Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality. IEEE Trans. Inf. Theory. 49(8), 1912–1921 (2003).CrossRef MathSciNet MATH
    4.N Jindal, A Goldsmith, Dirty-paper coding versus TDMA for MIMO broadcast channels. IEEE Trans. Inf. Theory. 51(5), 1783–1794 (2005).CrossRef MathSciNet MATH
    5.I Sohn, JG Andrews, KB Lee, MIMO broadcast channels with spatial heterogeneity. IEEE Trans. Wirel. Commun. 9(8), 2449–2454 (2010).CrossRef
    6.I Sohn, JG Andrews, Approaching large-system limits faster in multiuser MIMO with adaptive channel feedback adjustments. IEEE Commun. Lett. 14:, 1125–1127 (2010).CrossRef
    7.BA Bjerke, LTE-advanced and the evolution of LTE deployments. IEEE Wirel. Commun. 18(5), 4–5 (2011).CrossRef
    8.Nokia Networks, LTE Release 12 and Beyond, 1–15 (2015). http://​www.​nsn.​com .
    9.H Holma, A Toskala, LTE for UMTS: Evolution to LTE-Advanced, 2nd Edition (Wiley, 111 River Street Hoboken, NJ 07030-5774, 2011).CrossRef
    10.TA Levanen, J Pirskanen, T Koskela, J Talvitie, M Valkama, Radio interface evolution towards 5G and enhanced local area communications. IEEE Access. 2:, 1005–1029 (2014).CrossRef
    11.E Perahia, R Stacey, Next Generation Wireless LANs: 802.11n and 802.11ac, 2nd ed. (Cambridge Univ. Press, New York, NY, USA, 2013).CrossRef
    12.Z Pi, F Khan, An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011).CrossRef
    13.TS Rappaport, S Sun, R Mayzus, H Zhao, Y Azar, K Wang, GN Wong, JK Schulz, M Samimi, F Gutierrez, Millimeter wave mobile communications for 5G cellular: it will work!IEEE Access. 1:, 335–349 (2013).CrossRef
    14.J Qiao, X Shen, JW Mark, Y He, MAC-Layer concurrent beamforming protocol for indoor millimeter-wave networks. IEEE Trans. Veh. Technol. 64(1), 327–338 (2015).CrossRef
    15.B Li, Z Zhou, W Zou, X Sun, G Du, On the efficient beamforming training for 60 GHz wireless personal area networks. IEEE Trans. Wirel. Commun. 12(2), 504–515 (2013).CrossRef
    16.Y Kim, H Ji, H Lee, J Lee, BL Ng, J Zhang, Evolution beyond LTE-advanced with full dimension MIMO. IEEE Int. Conf. Commun. Workshops (ICC), Budapest, 9–13 (2013).
    17.YH Nam, BL Ng, K Sayana, Y Li, J Zhang, Y Kim, J Lee, Full-dimension MIMO (FD-MIMO) for next generation cellular technology. IEEE Commun. Mag. 51(6), 172–179 (2013).CrossRef
    18.A Sayeed, N Behdad, Continuous aperture phased MIMO: basic theory and applications. IEEE Int. Conf. Communication, Control, and Computing Allerton, IL, USA, 1196–1203 (Sept. 29–Oct. 1 2010).
    19.A Sayeed, Deconstructing multiantenna fading channels. IEEE Trans. Signal Process. 50:, 2563–2579 (2002).CrossRef
    20.A Kalis, A Kanatas, C Papadias, A novel approach to MIMO transmission using a single RF front end. IEEE J. Sel. Areas Commun. 26:, 972–980 (2008).CrossRef
    21.M Wennstrom, T Svantesson, An antenna solution for MIMO channels: the switched parasitic antenna. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications San Diego, CA, USA. 1:, A-159–163 (Sep. 2001).
    22.K Gyoda, T Ohira, Design of electronically steerable passive array radiator (ESPAR) antennas. IEEE Int. Symp. Antennas and Propagation Society Salt Lake City, UT, USA. 2:, 922–925 (July 16–21, 2000).
    23.MA Sedaghat, RR Mueller, G Fischer, A novel single-RF transmitter for massive MIMO. 18th International ITG Workshop on Smart Antennas (WSA) Erlangen, 1–8 (12–13 Mar. 2014).
    24.Z Jin, J-H Lim, T-Y Yun, Small-size and high-isolation MIMO antenna for WLAN. ETRI Journal. 34(1), 114–117 (2012).CrossRef
    25.R Bains, R Muller, Using parasitic elements for implementing the rotating antenna for MIMO receivers. IEEE Trans. Wireless Commun. 7(11), 4522–4533 (2008).CrossRef
    26.M Yoshida, K Sakaguchi, K Araki, Single front-end MIMO architecture with parasitic antenna elements. IEICE Trans. Commun. E95-B(3), 882–888 (2012).CrossRef
    27.D Gwak, I Sohn, SH Lee, Analysis of single-RF MIMO receiver with beam switching antenna. ETRI Journal. 3:, 647–656 (2015).CrossRef
    28.V Barousis, AG Kanatas, N Skentos, A Kalis, Pattern diveristy for single RF user terminals in multiuser environments. IEEE Commun. Lett. 14(2), 151–153 (Feb. 2010).
    29.V Barousis, AG Kanatas, A Kalis, J Perruisseau-Carrier, Reconfigurable parasitic antennas for compact mobile terminals in multiuser wireless systems. EURASIP J. Wirel. Commun. Netw, 30 (2012). doi:10.​1186/​1687--1499-2012-30 , Published: 3 Feb. 2012.
    30.S Shelley, J Costantine, CG Christodoulou, DE Anagnostou, JC Lyke, FPGA-controlled switch-reconfigured antenna. IEEE Antennas Wireless Propag. Lett. 9:, 355–96358 (2010).CrossRef
    31.CG Christodoulou, Y Tawk, SA Lane, SR Erwin, Reconfigurable antennas for wireless and space applications. Proc. IEEE. 100(7), 2250–2261 (2012).CrossRef
    32.VI Barousis, AG Kanatas, A Kalis, Beamspace-domain analysis of single-RF front-end MIMO systems. IEEE Trans. Veh. Technol. 60(3), 1195–1199 (2011).CrossRef
    33.3GPP TSG-RAN WG1, Orange Telefonica, Backhaul modelling for CoMP, R1-111174 (Feb. 2011).
    34.3GPP TSG-RAN WG3, TSG RAN WG3, Reply LS to R3-070527/R1-071242 on Backhaul (X2 interface) Delay, R3-070689 (Mar. 2007).
  • 作者单位:Illsoo Sohn (1)
    Donghyuk Gwak (2)

    1. Department of Electronic Engineering, Gachon University, Seongnam, 461-701, Korea
    2. Communications and Internet Research Lab., ETRI, Daejeon, 305-700, Korea
  • 刊物主题:Signal, Image and Speech Processing;
  • 出版者:Springer International Publishing
  • ISSN:1687-1499
文摘
In this paper, we investigate the replica interference problem of a multiple input multiple output (MIMO) receiver with a beam switching antenna (BSA) within the orthogonal frequency division multiplexing (OFDM) framework. Our frequency-domain analysis has revealed the following important findings: (i) without co-existing system, replica interference in the system can be completely avoided as long as the beam pattern switching rate of the BSA receiver is an integer multiple of the product of the OFDM sampling rate and the number of receiving beam patterns and (ii) with co-existing systems, replica interference cannot always be avoided because co-existing systems may induce replicas in the operating frequency bands of the system. We present a replica interference criterion that depends on the co-existing status and users’ beam switching capabilities. Based on our findings, we propose various replica interference avoidance (RINA) strategies for different co-existing and cooperating network scenarios. In addition, the overall network operation principles of the proposed RINA strategy are presented. Simulation results verify that the proposed MIMO-OFDM system with a BSA successfully provides both MIMO and OFDM benefits, thereby resolving replica interference issues. Keywords Multiple input multiple output Beam switching antenna Single-RF MIMO receiver Spread spectrum Co-channel interference

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700