Influence of a Silastic ECoG Grid on EEG/ECoG Based Source Analysis
详细信息    查看全文
  • 作者:Benjamin Lanfer (1)
    Christian R?er (1)
    Michael Scherg (2)
    Stefan Rampp (3)
    Christoph Kellinghaus (4)
    Carsten Wolters (1)
  • 关键词:Finite element method ; FEM ; ECoG ; Presurgical epilepsy diagnosis ; Simultaneous EEG ; Constrained Delaunay tetrahedralization ; Dipole fitting method
  • 刊名:Brain Topography
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:26
  • 期:2
  • 页码:212-228
  • 全文大小:1595KB
  • 参考文献:1. Akhtari M, Bryant H, Mamelak A, Flynn E, Heller L, Shih J, Mandelkem M, Matlachov A, Ranken D, Best E, et?al (2002) Conductivities of three-layer live human skull. Brain Topogr 14(3):151-67 CrossRef
    2. Alarcon G, Kissani N, Dad M, Elwes R, Ekanayake J, Hennessy M, Koutroumanidis M, Binnie C, Polkey C (2001) Lateralizing and localizing values of ictal onset recorded on the scalp: evidence from simultaneous recordings with intracranial foramen ovale electrodes. Epilepsia 42(11):1426-437 CrossRef
    3. Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, Fauser S, Zentner J, Rating D, Scherg M (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45(6):621-31 CrossRef
    4. Bast T, Boppel T, Rupp A, Harting I, Hoechstetter K, Fauser S, Schulze-Bonhage A, Rating D, Scherg M (2006) Noninvasive source localization of interictal EEG spikes: effects of signal-to-noise ratio and averaging. J Clin Neurophysiol 23(6):487-97 CrossRef
    5. Baumann S, Wozny D, Kelly S, Meno F (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220-23 CrossRef
    6. Baumgartner C, Lindinger G, Ebner A, Aull S, Serles W, Olbrich A, Lurger S, Czech T, Burgess R, Luders H (1995) Propagation of interictal epileptic activity in temporal lobe epilepsy. Neurology 45(1):118-22 CrossRef
    7. Bertrand O, Thévenet M, Perrin F (1991) 3D finite element method in brain electrical activity studies. In: Nenonen J, Rajala H, Katila T (eds) Biomagnetic localization and 3D modelling. Report of the Dep. of Tech. Physics, Helsinki University of Technology, pp 154-71
    8. Braess D (2007) Finite elements: theory, fast solvers and applications in solid mechanics. Cambridge University Press, Cambridge CrossRef
    9. Buchner H, Knoll G, Fuchs M, Rien?cker A, Beckmann R, Wagner M, Silny J, Pesch J (1997) Inverse localization of electric dipole current sources in finite element models of the human head. Electroencephalogr Clin Neurophysiol 102:267-78 CrossRef
    10. Cook M, Koles Z (2006) A high-resolution anisotropic finite-volume head model for EEG source analysis. In: Proceedings of the 28th annual international conference of the IEEE engineering in medicine and biology society, pp 4536-539
    11. Dannhauer M, Lanfer B, Wolters C, Kn?sche T (2011) Modeling of the human skull in EEG source analysis. Hum Brain Mapp 32(9):1383-399. doi:10.1002/hbm.21114
    12. de Munck J, Peters M (1993) A fast method to compute the potential in the multisphere model. IEEE Trans Biomed Eng 40(11):1166-4 CrossRef
    13. Dümpelmann M, Fell J, Wellmer J, Urbach H, Elger C (2009) 3D source localization derived from subdural strip and grid electrodes: a simulation study. Clin Neurophysiol 120:1061-069 CrossRef
    14. Ebersole J (1999) Non-invasive pre-surgical evaluation with EEG/MEG source analysis. Electroencephalogr Clin Neurophysiol Suppl 50:167-74
    15. Fuchs M, Wagner M, Kastner J (2007) Development of volume conductor and source models to localize epileptic foci. J Clin Neurophysiol 24(2):101-19 doi:10.1097/WNP.0b013e318038fb3e CrossRef
    16. Güllmar D, Haueisen J, Reichenbach J (2010) Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. a high-resolution whole head simulation study. NeuroImage. doi:10.1016/j.neuroimage.2010.02.014
    17. Hackbusch W (1992) Elliptic differential equations. Springer, Berlin CrossRef
    18. Hallez H, Vanrumste B, Hese PV, D’Asseler Y, Lemahieu I, de Walle RV (2005) A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys Med Biol 50:3787-806 CrossRef
    19. H?m?l?inen M, Ilmoniemi R (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comp 32:35-2 CrossRef
    20. H?m?l?inen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413-97 CrossRef
    21. Huiskamp G, Maintz J, Wieneke G, Viergever M, van Huffelen A (1997) The influence of the use of realistic head geometry in the dipole localization of interictal spike activity in MTLE patients. Biomed Tech 42:84-7
    22. Huiskamp G, Vroeijenstijn M, van Dijk R, Wieneke G, van Huffelen A (1999) The need for correct realistic geometry in the inverse EEG problem. IEEE Trans Biomed Eng 46(11):1281-287 CrossRef
    23. Huiskamp G, Oostendorp T, Hoekema R, Leijten F (2000) Simultaneous eeg/meg and ecog source characterization of interictal spikes. In: BIOMAG2000, Proceedings of the 12th international conference on biomagnetism. http://biomag2000.hut.fi
    24. Kn?sche T (1997) Solutions of the neuroelectromagnetic inverse problem. Ph.D. thesis, University of Twente, The Netherlands
    25. Kobayashi K, Merlet I, Gotman J (2001) Separation of spikes from background by independent component analysis with dipole modeling and comparison to intracranial recordings. Clin Neurophysiol 112(3):405-13 CrossRef
    26. Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imag 24(1):12-8 CrossRef
    27. Lai Y, van Drongelen W, Ding L, Hecox K, Towle V, Frim D, He B (2005) Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol 116:456-65 CrossRef
    28. Lantz G, Holub H, Ryding E, Rosen I (1996) Simultaneous intracranial and extracranial recordings of interictal epileptiform activity in patients with drug resistent partial epilepsy: patterns of conduction and results from dipole reconstructions. Electroencephalogr Clin Neurophysiol 99:69-8 CrossRef
    29. Lantz G, de Peralta MG, Gonzalez A, Michel C (2001) Noninvasive localization of electromagnetic epileptic activity. II. Demonstration of sublobar accuracy in patients with simultaneous surface and depth recordings. Brain Topogr 14(2):139-47 CrossRef
    30. Law S (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99-09 CrossRef
    31. Leeman B, Cole A (2008) Advancements in the treatment of epilepsy. Ann Rev Med 59(1), 503-23. doi:10.1146/annurev.med.58.071105.110848 . http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.med.58.071105.110848
    32. Lew S, Wolters C, Anwander A, Makeig S, MacLeod R (2009) Improved EEG source analysis using low resolution conductivity estimation in a four-compartment finite element head model. Hum Brain Mapp 30(9), 2862-878. http://dx.doi.org/10.1002/hbm.20714
    33. Lew S, Wolters C, Dierkes T, R?er C, MacLeod R (2009) Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. Applied Numerical Mathematics 59(8):1970-988. doi:10.1016/j.apnum.2009.02.006
    34. Maes F, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 16(2):187-98 CrossRef
    35. Meijs J, Weier O, Peters M, van Oosterom A (1989) On the numerical accuracy of the boundary element method. IEEE Trans Biomed Eng 36(10):1038-049 CrossRef
    36. Merlet I, Gotman J (1999) Reliability of dipole models of epileptic spikes. Clin Neurophysiol 110(6):1013-028 CrossRef
    37. Michel C, Murray M, Lantz G, Gonzalez S, Spinelli L, de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115: 2195-222. Invited review
    38. Mikuni N, Nagamine T, Ikeda A, Terada K, Taki W, Kimura J, Kikuchi H, Shibasaki H (1997) Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. NeuroImage 5(4):298-06. doi:10.1006/nimg.1997.0272 . http://www.sciencedirect.com/science/article/pii/S105381199790272X
    39. Mosher J, Lewis P, Leahy R (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39(6):541-57 CrossRef
    40. Neuroscan: CURRY. CURrent Reconstruction and Imaging (2009)
    41. Pataraia E, Lindinger G, Deecke L, Mayer D, Baumgartner C (2005) Combined MEG/EEG analysis of the interictal spike complex in mesial temporal lobe epilepsy. NeuroImage 24:607-14 CrossRef
    42. Penfield W (1950) The surgical therapy of temporal lobe seizures. Trans Am Neurol Assoc 51:146-49
    43. Pham D, Prince J (1998) An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 20:57-8 CrossRef
    44. Plummer C, Harvey A, Cook M (2008) EEG source localization in focal epilepsy: where are we now?. Epilepsia 49(2):201-18 CrossRef
    45. Pursiainen S, Sorrentino A, Campi C, Piana M (2011) Forward simulation and inverse dipole localization with the lowest order raviart-thomas elements for electroencephalography. Inverse Problems 27(4). doi:10.1088/0266-5611/27/4/045003
    46. Ramon C, Schimpf P, Haueisen J, Holmes M, Ishimaru A (2004) Role of soft bone, CSF and gray matter in EEG simulations. Brain Topogr 16(4):245-48 CrossRef
    47. Ray A, Tao J, Hawes-Ebersole S, Ebersole J (2007) Localizing value of scalp EEG spikes: a simultaneous scalp and intracranial study. J Clin Neurophysiol 118(1):69-9 CrossRef
    48. R?er C (2008) Source analysis of simultaneous EEG and ECoG mesurements in presurgical epilepsy diagnosis. Diplomarbeit in physik, Institut für Biomagnetismus und Biosignalanalyse, Universit?tsklinikum Münster
    49. Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain Behav Evol 124(Pt 9):1683-700 CrossRef
    50. Roth B, Ko D, von Albertini-Carletti I, Scaffidi D, Sato S (1997) Dipole localization in patients with epilepsy using the realistically shaped head model. Electroencephalogr Clin Neurophysiol 102:159-66 CrossRef
    51. Rullmann M, Anwander A, Dannhauer M, Warfield S, Duffy F, Wolters C (2009) EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model. NeuroImage 44(2):399-10. doi:10.1016/j.neuroimage.2008.09.009 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642992/
    52. Salayev K, Nakasato N, Ishitobi M, Shamoto H, Kanno A, Iinuma K (2006) Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole. Clin Neurophysiol 117:1836-3 CrossRef
    53. Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11-2 CrossRef
    54. Scherg M, Von Cramon D (1986) Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol 65(5):344-0 CrossRef
    55. Scherg M, Bast T, Berg P (1999) Multiple source analysis of interictal spikes: goals, requirements, and clinical value. J Clin Neurophysiol 16(3):214-24 CrossRef
    56. Schimpf P, Haynor D, Kim Y (1996) Object-free adaptive meshing in highly heterogeneous 3-D domains. Int J Biomed Comput 40(3):209-25. doi:10.1016/0020-7101(95)01146-3 . http://www.sciencedirect.com/science/article/pii/0020710195011463
    57. Schwarz H (1991) Methode der finiten Elemente. B.G.Teubner, Stuttgart
    58. Scientific Computing and Imaging Institute (SCI): SCIRun: A scientific computing problem solving environment. http://www.scirun.org
    59. Si H (2008) Adaptive tetrahedral mesh generation by constrained Delaunay refinement. Int J Numer Methods Eng 75(7):856-80. doi:10.1002/nme.2318
    60. Si H (2009) TetGen—a quality tetrahedral mesh generator and three-dimensional Delaunay triangulator, user’s manual. Tech. rep., Weierstra ${\ss}$ -Institut für Angewandte Analysis und Stochastik, Berlin. http://tetgen.berlios.de
    61. Si H, G?rtner K (2005) Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations. In: Proceedings of the 14th international meshing roundtable, pp 147-63. Sandia National Laboratories
    62. SimBio Development Group: SimBio: A generic environment for bio-numerical simulations. online, http://www.mrt.uni-jena.de/simbio. Accessed 15 June 2012
    63. Soza G (2005) Registration and simulation for the analysis of intraoperative brain shift. Ph.D. thesis, Faculty of Computer Science, Friedrich-Alexander-Universit?t Erlangen-Nürnberg
    64. Stefan H, Hummel C, Scheler G, Genow A, Druschky K, Tilz C, Kaltenhauser M, Hopfengartner R, Buchfelder M, Romstock J (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain Behav Evol 126(Pt 11):2396-405 CrossRef
    65. Tao J, Baldwin M, Hawes-Ebersole S, Ebersole J (2007a) Cortical substrates of scalp EEG epileptiform discharges. J Clin Neurophysiol 24(2):96-00 CrossRef
    66. Tao J, Baldwin M, Ray A, Hawes-Ebersole S, Ebersole J (2007b) The impact of cerebral source area and synchrony on recording scalp electroencephalographyictal patterns. Epilepsia 48(11):2167-176 CrossRef
    67. Vallaghe S, Papadopoulo T (2010) A trilinear immersed finite element method for solving the electroencephalography forward problem. SIAM J Sci Comput 32(4):2379 doi:10.1137/09075038X CrossRef
    68. van den Broek S, Reinders F, Donderwinkel M, Peters M (1998) Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol 106:522-34 CrossRef
    69. Waberski T, Gobbele R, Herrendorf G, Steinhoff B, Kolle R, Fuchs M, Paulus W, Buchner H (2000) Source reconstruction of mesial-temporal epileptiform activity: comparison of inverse techniques. Epilepsia 41(12):1574-83 CrossRef
    70. Weinstein D, Zhukov L, Johnson C (2000) Lead-field bases for electroencephalography source imaging. Ann Biomed Eng 28(9):1059-066 CrossRef
    71. Wiebe S, Blume W, Girvin J, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. New England J Med 345(5):311-18 CrossRef
    72. Wolters C (2008) Finite element method based electro- and magnetoencephalography source analysis in the human brain. Habilitation in mathematics, Faculty of Mathematics and Natural Sciences, University of Münster, Germany
    73. Wolters C, Grasedyck L, Hackbusch W (2004) Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem. Inverse Probl 20(4):1099-116. doi:10.1088/0266-5611/20/4/007 CrossRef
    74. Wolters C, Anwander A, Weinstein D, Koch M, Tricoche X, MacLeod R (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3):813-26. doi:10.1016/j.neuroimage.2005.10.014 CrossRef
    75. Wolters C, Anwander A, Berti G, Hartmann U (2007a) Geometry-adapted hexahedral meshes improve accuracy of finite element method based EEG source analysis. IEEE Trans Biomed Eng 54(8):1446-453. doi:10.1109/TBME.2007.890736 CrossRef
    76. Wolters C, K?stler H, M?ller C, H?rtlein J, Grasedyck L, Hackbusch W (2007b) Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models. SIAM J Sci Comput 30(1):24-5. doi:10.1137/060659053 CrossRef
    77. Zhang Y, Ding L, van Drongelen W, Hecox K, Frim D, He B (2006) A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method. Neuroimage 31(4):1513-524 CrossRef
    78. Zhang Y, van Drongelen W, Kohrman M, He B (2008) Three-dimensional brain current source reconstruction from intra-cranial ECoG recordings. NeuroImage 42(2):683-95. doi:10.1016/j.neuroimage.2008.04.263 . http://www.sciencedirect.com/science/article/B6WNP-4SGKBB4-3/2/be9c5075b633a57b111b633e3203b58b
    79. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method. Its basis and fundamentals. Elsevier, Butterworth-Heinemann
  • 作者单位:Benjamin Lanfer (1)
    Christian R?er (1)
    Michael Scherg (2)
    Stefan Rampp (3)
    Christoph Kellinghaus (4)
    Carsten Wolters (1)

    1. Institute for Biomagnetism and Biosignalanalysis, Westf?lische Wilhelms-Universit?t Münster, Malmedyweg 15, 48149, Münster, Germany
    2. BESA GmbH, Freihamer Str. 18, 82166, Gr?felfing, Germany
    3. Department of Neurology, Epilepsy Center, University Hospital Erlangen, Erlangen, Germany
    4. Department of Neurology, Klinikum Osnabrück, Osnabrück, Germany
  • ISSN:1573-6792
文摘
The simultaneous evaluation of the local electrocorticogram (ECoG) and the more broadly distributed electroencephalogram (EEG) from humans undergoing evaluation for epilepsy surgery has been shown to further the understanding of how pathologies give rise to spontaneous seizures. However, a well-known problem is that the disruption of the conducting properties of the brain coverings can render simultaneous scalp and intracranial recordings unrepresentative of the habitual EEG. The ECoG electrodes for measuring the potential on the surface of the cortex are commonly embedded into one or more sheets of a silastic material. These highly resistive silastic sheets influence the volume conduction and might therefore also influence the scalp EEG and ECoG measurements. We carried out a computer simulation study to examine how the scalp EEG and the ECoG, as well as the source reconstruction therefrom, employing equivalent current dipole estimation methods, are affected by the insulating ECoG grids. The finite element method with high quality tetrahedral meshes, generated using a constrained Delaunay tetrahedralization meshing approach, was used to model the volume conductor that incorporates the very thin ECoG sheets. It is shown that the insulating silastic substrate of the ECoG grids can have a large impact on the scalp potential and on source reconstruction from scalp EEG data measured in the presence of the grids. The reconstruction errors are characterized with regard to the location of the source in the brain and the mislocalization tendency. In addition, we found a non-negligible influence of the insulating grids on ECoG based source analysis. We conclude, that the thin insulating ECoG sheets should be taken into account, when performing source analysis of simultaneously measured ECoG and scalp EEG data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700