Anti-migratory and increased cytotoxic effects of novel dual drug-loaded complex hybrid micelles in triple negative breast cancer cells
详细信息    查看全文
  • 作者:Rajaletchumy Veloo Kutty ; Chor Yong Tay ; Chen Siew Lim ; Si-Shen Feng…
  • 关键词:nanomedicine ; biomaterials ; nanobiology ; biodegradable polymers ; drug targeting
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:8
  • 期:8
  • 页码:2533-2547
  • 全文大小:2,357 KB
  • 参考文献:[1]Baylin, S. B. Resistance, epigenetics and the cancer ecosystem. Nat. Med. 2011, 17, 288-89.View Article
    [2]Setyawati, M. I.; Tay, C. Y.; Leong, D. T. Exploiting cancer’s antioxidative weakness through p53 with nanotoxicology. Nanomedicine 2014, 9, 369-71.View Article
    [3]Jones, P. A.; Laird, P. W. Cancer epigenetics comes of age. Nat. Genet. 1999, 21, 163-67.View Article
    [4]Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057-068.View Article
    [5]Wolffe, A. P.; Matzke, M. A. Epigenetics: Regulation through repression. Science 1999, 286, 481-86.View Article
    [6]Momparler, R. L. Cancer epigenetics. Oncogene 2003, 22, 6479-483.View Article
    [7]Yoo, C. B.; Jones, P. A. Epigenetic therapy of cancer: Past, present and future. Nat. Rev. Drug Discov. 2006, 5, 37-0.View Article
    [8]Devinoy, E.; Rijnkels, M. Epigenetics in mammary gland biology and cancer. J. Mammary Gland Biol. Neoplasia 2010, 15, 1-.View Article
    [9]Baylin, S. B.; Herman, J. G.; Graff, J. R.; Vertino, P. M.; Issa, J. P. Alterations in DNA methylation: A fundamental aspect of neoplasia. Adv. Cancer Res. 1998, 72, 141-96.View Article
    [10]Herman, J. G.; Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 2042-054.View Article
    [11]Grant, S.; Easley, C.; Kirkpatrick, P. V. Nat. Rev. Drug Discov. 2007, 6, 21-2.View Article
    [12]Marks, P. A.; Breslow, R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 2007, 25, 84-0.View Article
    [13]Cortez, C. C.; Jones, P. A. Chromatin, cancer and drug therapies. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2008, 647, 44-1.View Article
    [14]Dokmanovic, M.; Clarke, C.; Marks, P. A. Histone deacetylase inhibitors: Overview and perspectives. Mol. Cancer Res. 2007, 5, 981-89.View Article
    [15]Carew, J. S.; Giles, F. J.; Nawrocki, S. T. Histone deacetylase inhibitors: Mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 2008, 269, 7-7.View Article
    [16]McGrogan, B. T.; Gilmartin, B.; Carney, D. N.; McCann, A. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta 2008, 1785, 96-32.
    [17]Gascoigne, K. E.; Taylor, S. S. How do anti-mitotic drugs kill cancer cells? J. Cell Sci. 2009, 122, 2579-585.View Article
    [18]Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 2010, 10, 194-04.View Article
    [19]Angelucci, A.; Mari, M.; Millimaggi, D.; Giusti, I.; Carta, G.; Bologna, M.; Dolo, V. Suberoylanilide hydroxamic acid partly reverses resistance to paclitaxel in human ovarian cancer cell lines. Gynecol. Oncol. 2010, 119, 557-63.View Article
    [20]Cooper, A. L.; Greenberg, V. L.; Lancaster, P. S.; van Nagell, J. R.; Zimmer, S. G.; Modesitt, S. C. In vitro and in vivo histone deacetylase inhibitor therapy with suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer. Gynecol. Oncol. 2007, 104, 596-01.View Article
    [21]Dietrich, C. S.; Greenberg, V. L.; DeSimone, C. P.; Modesitt, S. C.; van Nagell, J. R.; Craven, R.; Zimmer, S. G. Suberoylanilide hydroxamic acid (SAHA) potentiates paclitaxel induced apoptosis in ovarian cancer cell lines. Gynecol. Oncol. 2010, 116, 126-30.View Article
    [22]Cai, Y. Y.; Yap, C. W.; Wang, Z.; Ho, P. C.; Chan, S. Y.; Ng, K. Y.; Ge, Z. G.; Lin, H. S. Solubilization of vorinostat by cyclodextrins. J. Clin. Pharm. Ther. 2010, 35, 521-26.View Article
    [23]Hu, C. M. J.; Aryal, S.; Zhang, L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 2010, 1, 323-34.View Article
    [24]Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310-316.View Article
    [25]Alexis, F.; Pridgen, E. M.; Langer, R.; Farokhzad, O. C. Nanoparticle technologies for cancer therapy. In Handbook of Experimental Pharmacology (Volume 197). Rosenthal, W., Ed. Springer Science+Business Media: Heidelberg, 2010, pp 55-6.
    [26]Xing, R.; Bhirde, A. A.; Wang, S.; Sun, X.; Liu, G.; Hou, Y.; Chen, X. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2012, 6, 1-.View Article
    [27]Chen, H.; Yeh, J.; Wang, L.; Khurshid, H.; Peng, N.; Wang, A. Y.; Mao, H. Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Res. 2010, 3, 852-62.View Article
    [28]Muthu, M. S.; Kutty, R. V.; Luo, Z.; Xie, J.; Feng, S. S. Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials 2014, 39, 234-48.View Article
    [29]Li, Y.; Zheng, S.; Liang, X.; Jin, Y.; Wu, Y.; Bai, H.; Liu, R.; Dai, Z.; Liang Z.; Shi, T. Doping hydr
  • 作者单位:Rajaletchumy Veloo Kutty (1)
    Chor Yong Tay (1)
    Chen Siew Lim (1)
    Si-Shen Feng (1) (2)
    David Tai Leong (1) (3)

    1. Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, Singapore, 117585, Singapore
    2. International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai, 200433, China
    3. NUS Graduate School for Integrative Science and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
A polymer-based nanocarrier was developed for the co-delivery of epigenetic and chemotherapeutic drugs. The sterically stabilized hybrid micelle system uses micelles composed of D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000). In this study, suberoylanilide hydroxamic acid (SAHA) and paclitaxel were used as model drugs for combination chemotherapy to enhance therapeutic efficiency in targeting mesenchyme-like triple negative breast cancer (TNBC) cells. Combination therapy of paclitaxel and SAHA in a dual drug micelle system, (P + S)mic, exhibited an IC50 value of 0.52 μg/mL, which is about 5.91-fold more cytotoxic than the mere combination of free drugs (P + S). Furthermore, the (P + S)mic formulation was far more effective at inhibiting cell migration by more than 3.4-fold than the control. Thus, our findings show that the co-delivery of these drugs using the micelle system greatly enhances their therapeutic effect at a lower dosage, thereby minimizing toxicity. In addition, this formulation is proved to be remarkably effective in preventing cell migration at low dosage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700