Could thermal stresses in a BGA/CGA-system be evaluated from a model intended for a homogeneously bonded assembly?
详细信息    查看全文
  • 作者:E. Suhir ; R. Ghaffarian ; J. Nicolics
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:570-579
  • 全文大小:632 KB
  • 参考文献:1.G.A. Lang et al., Thermal fatigue in silicon power devices. IEEE Trans. Electron Devices 17, 787–793 (1970)CrossRef
    2.J.H. Lau (ed.), Thermal Stress and Strain in Microelectronics Packaging (Van-Nostrand Reinhold, New York, 1993)
    3.R. Zeyfang, Stresses and strains in a plate bonded to a substrate: semiconductor devices. Solid State Electron. 14, 1035–1039 (1971)CrossRef
    4.E. Suhir, Stresses in bi-metal thermostats. ASME J. Appl. Mech. 53(3), 657–660 (1986)CrossRef
    5.E. Suhir, Interfacial stresses in bi-metal thermostats. ASME J. Appl. Mech. 56(3), 595–600 (1989)CrossRef
    6.A.Y. Kuo, Thermal stresses at the edge of a bimetallic thermostat. ASME J. Appl. Mech. 56, 595–600 (1989)CrossRef
    7.J.W. Eischen, C. Chung, J.H. Kim, Realistic modeling of the edge effect stresses in bimaterial elements. ASME J. Electron. Packag 112(1), 313–320 (1990)CrossRef
    8.E. Suhir, Thermal stress in a bi-material assembly with a “piecewise-continuous” bonding layer: theorem of three axial forces. J. Appl. Phys. D 42, 27–31 (2009)
    9.E. Suhir, C. Gu, L. Cao, Predicted thermal stress in a circular adhesively bonded assembly with identical adherends. ASME J. Appl. Mech, 79(1), 7–18 (2011)
    10.E. Suhir, On a paradoxical situation related to bonded joints: could stiffer mid-portions of a compliant attachment result in lower thermal stress? JASME J. Solid Mech. Mater. Eng. 3(7), 313–330 (2009)
    11.E. Suhir, Thermal stress in a bi-material assembly adhesively bonded at the ends. J. Appl. Phys. 89(1), 4878–4885 (2001)CrossRef
    12.E. Suhir, Thermal stress in an adhesively bonded joint with a low modulus adhesive layer at the ends. J. Appl. Phys. 55, 3657–3661 (2003)
    13.E. Suhir, A. Shakouri, Predicted thermal stresses in a multi-leg thermoelectric module (TEM) design. ASME J. Appl. Mech. 80(2), 021012 (2013). doi:10.​1115/​1.​4007524
    14.E. Suhir, Interfacial thermal stresses in a bi-material assembly with a low-yield-stress bonding layer. Model. Simul. Mater. Sci. Eng. 14(8), 1421 (2006)
    15.R. Ghaffarian, BGA assembly reliability, chapter 20, in Area Array Packaging Handbook, ed. by K. Gilleo (McGraw-Hill, Maidenherd, 2004)
    16.R. Ghaffarian, Assembly and reliability of 1704 I/O FCBGA and FPBGAs, IPC APEX EXPO 2012
    17.R. Ghaffarian, Thermal cycle and vibration/drop reliability of area array package assemblies, chapter 22, in Structural Dynamics of Electronics and Photonic Systems, ed. by E. Suhir, T.-X. Yu, D. Steinberg (Springer, Berlin, 2011)
    18.R. Ghaffarian, in Damage and Failures of CGA/BGA Assemblies Under Thermal Cycling and Dynamic Loadings, ASME IMECE2013, San Diego, California, USA, 15–21 Nov
    19.R. Ghaffarian, Thermal cycle reliability and failure mechanisms of CCGA and PBGA assemblies with and without corner staking, IEEE Trans. Compon. Packag. Technol. 31(2), 285–296 (2008)CrossRef
    20.R. Ghaffarian, Area array technology for high reliability applications, chapter 16, in Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, ed. by E. Suhir (Springer, Berlin, 2006)
    21.R. Ghaffarian, CCGA packages for space applications. Microelectron. Reliab. 46, 2006–2024 (2006)CrossRef
    22.A. Tasooji, R. Ghaffarian, A, Rinaldi, “Design parameters influencing reliability of CCGA assembly: sensitivity analysis, in IEEE ITHERM Conference (2006)
    23.E. Suhir, L.Bechou, B. Levrier, D. Calvez, Assessment of the size of the inelastic zone in a bga assembly, in 2013 IEEE Aerospace Conference, Big Sky, Montana, March 2013
    24.E. Suhir, Structural analysis in microelectronics and fiber optics (Van-Nostrand, New York, 1991)CrossRef
  • 作者单位:E. Suhir (1) (2) (4)
    R. Ghaffarian (3)
    J. Nicolics (4)

    1. Portland State University, Portland, OR, USA
    2. ERS Co., 727 Alvina Ct., Los Altos, CA, 94024, USA
    4. Technical University, Gusshausstraße 27-29, 1040, Vienna, Austria
    3. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
An analytical stress model is developed for the evaluation of thermal stresses in an inhomogeneously bonded assembly of the ball-grid-array (BGA) or column grid array (CGA) type. It is shown that one can get away with employing a simpler model intended for an assembly with a homogeneous bond, if the gaps between the supports (BGA balls or CGA columns) are small, so that the ratio \( \frac{p}{2l} \) of the pitch p (the distance between the joint centers) to the joint widths 2l is below 5, and the product kl of the parameter k of the interfacial shearing stress and half the assembly length l in the equivalent homogeneously bonded assembly is above 2.5. This is indeed the case for actual BGA and CGA systems. This finding can be used also in other areas of engineering, such as, say, mechanical or structural, when there is an intent to simplify the calculations by replacing a model for beams on separate supports by using a model intended for a beam on a continuous elastic foundation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700