The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib
详细信息    查看全文
  • 作者:Annkristin Heine ; Judith Schilling ; Barbara Grünwald…
  • 关键词:Myeloid derived suppressor cells ; Immunomodulation ; Tyrosine kinase inhibitors ; Immunotherapy
  • 刊名:Cancer Immunology, Immunotherapy
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:65
  • 期:3
  • 页码:273-282
  • 全文大小:3,114 KB
  • 参考文献:1.De Veirman K, Van Valckenborgh E, Lahmar Q, Geeraerts X, De Bruyne E, Menu E, Van Riet I, Vanderkerken K, Van Ginderachter JA (2014) Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front Oncol 4:349. doi:10.​3389/​fonc.​2014.​00349 CrossRef PubMed PubMedCentral
    2.Diaz-Montero CM, Finke J, Montero AJ (2014) Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol 41:174–184. doi:10.​1053/​j.​seminoncol.​2014.​02.​003 CrossRef PubMed PubMedCentral
    3.Escors D, Liechtenstein T, Perez-Janices N et al (2013) Assessing T-cell responses in anticancer immunotherapy: dendritic cells or myeloid-derived suppressor cells? Oncoimmunology 2:e26148. doi:10.​4161/​onci.​26148 CrossRef PubMed PubMedCentral
    4.Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother 61:255–263. doi:10.​1007/​s00262-011-1161-9 CrossRef PubMed
    5.Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802–807. doi:10.​1016/​j.​intimp.​2011.​01.​003 CrossRef PubMed PubMedCentral
    6.Medina-Echeverz J, Aranda F, Berraondo P (2014) Myeloid-derived cells are key targets of tumor immunotherapy. Oncoimmunology 3:e28398. doi:10.​4161/​onci.​28398 CrossRef PubMed PubMedCentral
    7.Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563. doi:10.​1158/​0008-5472.​CAN-07-6229 CrossRef PubMed
    8.Nagaraj S, Gabrilovich DI (2010) Myeloid-derived suppressor cells in human cancer. Cancer J 16:348–353. doi:10.​1097/​PPO.​0b013e3181eb3358​ CrossRef PubMed
    9.Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 1319:47–65. doi:10.​1111/​nyas.​12469 CrossRef PubMed
    10.Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.​1038/​nri2506 CrossRef PubMed PubMedCentral
    11.Nagaraj S, Gabrilovich DI (2007) Myeloid-derived suppressor cells. Adv Exp Med Biol 601:213–223CrossRef PubMed
    12.Talmadge JE (2007) Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 13:5243–5248. doi:10.​1158/​1078-0432.​CCR-07-0182 CrossRef PubMed
    13.Lechner MG, Megiel C, Russell SM, Bingham B, Arger N, Woo T, Epstein AL (2011) Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med 9:90. doi:10.​1186/​1479-5876-9-90 CrossRef PubMed PubMedCentral
    14.Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, Bronte V (2010) Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 22:238–244. doi:10.​1016/​j.​coi.​2010.​01.​021 CrossRef PubMed
    15.Wesolowski R, Markowitz J, Carson WE 3rd (2013) Myeloid derived suppressor cells-a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10. doi:10.​1186/​2051-1426-1-10 CrossRef PubMed PubMedCentral
    16.Hochst B, Schildberg FA, Sauerborn P et al (2013) Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 59:528–535. doi:10.​1016/​j.​jhep.​2013.​04.​033 CrossRef PubMed
    17.Held SA, Heine A, Mayer KT, Kapelle M, Wolf DG, Brossart P (2013) Advances in immunotherapy of chronic myeloid leukemia CML. Curr Cancer Drug Targets 13:768–774CrossRef PubMed
    18.Jabbour E, Cortes J, Kantarjian H (2011) Long-term outcomes in the second-line treatment of chronic myeloid leukemia: a review of tyrosine kinase inhibitors. Cancer 117:897–906. doi:10.​1002/​cncr.​25656 CrossRef PubMed PubMedCentral
    19.Appel S, Boehmler AM, Grunebach F et al (2004) Imatinib mesylate affects the development and function of dendritic cells generated from CD34+ peripheral blood progenitor cells. Blood 103:538–544. doi:10.​1182/​blood-2003-03-0975 CrossRef PubMed
    20.Ozao-Choy J, Ma G, Kao J et al (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69:2514–2522. doi:10.​1158/​0008-5472.​CAN-08-4709 CrossRef PubMed PubMedCentral
    21.Schade AE, Schieven GL, Townsend R, Jankowska AM, Susulic V, Zhang R, Szpurka H, Maciejewski JP (2008) Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 111:1366–1377. doi:10.​1182/​blood-2007-04-084814 CrossRef PubMed PubMedCentral
    22.Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, Wolf D, Brossart P (2013) The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood 122:1192–1202. doi:10.​1182/​blood-2013-03-484642 CrossRef PubMed
    23.Heine A, Held SA, Daecke SN, Riethausen K, Kotthoff P, Flores C, Kurts C, Brossart P (2015) The VEGF-receptor inhibitor axitinib impairs dendritic cell phenotype and function. PLoS One 10:e0128897. doi:10.​1371/​journal.​pone.​0128897 CrossRef PubMed PubMedCentral
    24.Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH (2011) Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol 77:12–19. doi:10.​1016/​j.​critrevonc.​2010.​02.​004 CrossRef PubMed PubMedCentral
    25.Lowe DB, Bose A, Taylor JL, Tawbi H, Lin Y, Kirkwood JM, Storkus WJ (2014) Dasatinib promotes the expansion of a therapeutically superior T-cell repertoire in response to dendritic cell vaccination against melanoma. Oncoimmunology 3:e27589. doi:10.​4161/​onci.​27589 CrossRef PubMed PubMedCentral
    26.Motoshima T, Komohara Y, Horlad H et al (2015) Sorafenib enhances the antitumor effects of anti-CTLA-4 antibody in a murine cancer model by inhibiting myeloid-derived suppressor cells. Oncol Rep 33:2947–2953. doi:10.​3892/​or.​2015.​3893 PubMed
    27.Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560. doi:10.​1158/​0008-5472.​CAN-08-1921 CrossRef PubMed PubMedCentral
    28.Ardeshna KM, Pizzey AR, Devereux S, Khwaja A (2000) The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96:1039–1046PubMed
    29.Hipp MM, Hilf N, Walter S, Werth D, Brauer KM, Radsak MP, Weinschenk T, Singh-Jasuja H, Brossart P (2008) Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111:5610–5620. doi:10.​1182/​blood-2007-02-075945 CrossRef PubMed
    30.Yu Q, Kovacs C, Yue FY, Ostrowski MA (2004) The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J Immunol 172:6047–6056CrossRef PubMed
    31.Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62:909–918. doi:10.​1007/​s00262-013-1396-8 CrossRef PubMed PubMedCentral
    32.Obermajer N, Wong JL, Edwards RP, Odunsi K, Moysich K, Kalinski P (2012) PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Invest 41:635–657. doi:10.​3109/​08820139.​2012.​695417 CrossRef PubMed
    33.Li RJ, Liu L, Gao W, Song XZ, Bai XJ, Li ZF (2014) Cyclooxygenase-2 blockade inhibits accumulation and function of myeloid-derived suppressor cells and restores T cell response after traumatic stress. J Huazhong Univ Sci Technol Med Sci 34:234–240. doi:10.​1007/​s11596-014-1264-6 CrossRef PubMed
    34.Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67:11021–11028. doi:10.​1158/​0008-5472.​CAN-07-2593 CrossRef PubMed
    35.Heine A, Held SA, Bringmann A, Holderried TA, Brossart P (2011) Immunomodulatory effects of anti-angiogenic drugs. Leukemia 25:899–905. doi:10.​1038/​leu.​2011.​24 CrossRef PubMed
    36.Bailey A, McDermott DF (2013) Immune checkpoint inhibitors as novel targets for renal cell carcinoma therapeutics. Cancer J 19:348–352. doi:10.​1097/​PPO.​0b013e31829e3153​ CrossRef PubMed
    37.McDermott DF, Drake CG, Sznol M et al (2015) Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol 33:2013–2020. doi:10.​1200/​JCO.​2014.​58.​1041 CrossRef PubMed
    38.Motzer RJ, Rini BI, McDermott DF et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II Trial. J Clin Oncol 33:1430–1437. doi:10.​1200/​JCO.​2014.​59.​0703 CrossRef PubMed
    39.Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70:3526–3536. doi:10.​1158/​0008-5472.​CAN-09-3278 CrossRef PubMed PubMedCentral
    40.Ko JS, Zea AH, Rini BI et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157. doi:10.​1158/​1078-0432.​CCR-08-1332 CrossRef PubMed
    41.van Cruijsen H, van der Veldt AA, Vroling L et al (2008) Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin Cancer Res 14:5884–5892. doi:10.​1158/​1078-0432.​CCR-08-0656 CrossRef PubMed
  • 作者单位:Annkristin Heine (1) (4)
    Judith Schilling (2)
    Barbara Grünwald (5)
    Achim Krüger (5)
    Heidrun Gevensleben (3)
    Stefanie Andrea Erika Held (1)
    Natalio Garbi (4)
    Christian Kurts (4)
    Peter Brossart (1)
    Percy Knolle (2) (5)
    Linda Diehl (6)
    Bastian Höchst (2) (5)

    1. Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
    4. Institute of Experimental Immunology, University Bonn, Bonn, Germany
    2. Institute of Molecular Medicine, University Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
    5. Institute for Molecular Immunology and Experimental Oncology, Technische Universität München, Munich, Germany
    3. Institute for Pathology, University Hospital Bonn, Bonn, Germany
    6. Institute of Experimental Immunology and Hepatology, University Hamburg Eppendorf, Hamburg, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Cancer Research
    Immunology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0851
文摘
Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14+HLA-DR−/low MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8+ T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700