Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis
详细信息    查看全文
  • 作者:Arpita Kundu (1)
    Susmita Bag (1)
    Sudha Ramaiah (1)
    Anand Anbarasu (1)
  • 关键词:CASP9 ; Leucine ; Neuroblastoma ; Proline ; rs1052574
  • 刊名:3 Biotech
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:3
  • 期:3
  • 页码:225-234
  • 全文大小:404KB
  • 参考文献:1. Abel F, Sjoberg R-M, Ejeska K et al (2002) Analyses of apoptotic regulators CASP9 and DFFA at 1P36.2, reveal rare allele variants in human neuroblastoma tumours. Br J Cancer 86:596鈥?04 CrossRef
    2. Abel F, Sjoberg R-M, Nilsson S et al (2005) Imbalance of the mitochondrial pro- and anti-apoptotic mediators in neuroblastoma tumours with unfavourable biology. Eur J Cancer 41:635鈥?46 CrossRef
    3. Ashkenazy H, Erez E, Martz E et al (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38:529鈥?33 CrossRef
    4. Bao L, Cui Y (2005) Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics 21:2185鈥?190 CrossRef
    5. Bao L, Zhou M, Cui Y (2005) nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res 33:480鈥?82 CrossRef
    6. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164鈥?70 CrossRef
    7. Brodeur GM, Azar C, Brother M et al (1992) Neuroblastoma. Cancer 70:1685鈥?694 CrossRef
    8. Cartegni L, Wang J, Zhu Z et al (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568鈥?571 CrossRef
    9. Cattelani S, Defferrari R, Marsilio S et al (2008) Impact of a single nucleotide polymorphism in the MDM2 gene on neuroblastoma development and aggressiveness: results of a pilot study on 239 patients. Clin Cancer Res 14:3248鈥?253 CrossRef
    10. Cordes MH, Sauer RT (1999) Tolerance of a protein to multiple polar-to-hydrophobic surface substitutions. Protein Sci 8:318鈥?25 CrossRef
    11. Eswar N, Webb B, Renom MAM et al (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 2(9):1鈥?1
    12. Fairbrother WG, Yeo RF, Sharp PA et al (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007鈥?013 CrossRef
    13. Fairbrother WG, Yeo GW, Yeh R et al (2004) RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res 32:187鈥?90 CrossRef
    14. Fisher A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461鈥?91 CrossRef
    15. Gale GB, D鈥橝ngio GJ, Uri A et al (1982) Cancer in neonates: the experience at the Children鈥檚 Hospital of Philadelphia. Pediatrics 70:409鈥?13
    16. Gerken T, Tep C, Rarick J (2004) The role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 50-diphosphate-alpha-nacetylgalactosamine: polypeptide / N-acetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats. Biochemistry 43:9888鈥?900 CrossRef
    17. Gidalevitz T, Krupinski T, Garcia S et al (2009) Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 5:399鈥?98 CrossRef
    18. Glaser F, Pupko T, Paz I et al (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163鈥?64 CrossRef
    19. Goldenberg O, Erez E, Nimrod G, Ben-Tal N (2009) The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures. Nucleic Acids Res 37:323鈥?27 CrossRef
    20. Greenblatt MS, Beaudet JG, Gump JR et al (2003) Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants. Oncogene 22:1150鈥?163 CrossRef
    21. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369鈥?87 CrossRef
    22. Guex N (1996) Swiss-PdbViewer: a new fast and easy to use PDB viewer for the Macintosh. Experientia 52:A26
    23. Guex N, Peitsch MC (1996) Swiss-PdbViewer: a fast and easy-to-use PDB viewer for Macintosh and PC. Protein Data Bank Q Newslett 77:7
    24. Heinrichs S, Look AT (2007) Identification of structural aberrations in cancer by SNP array analysis. Genome Biol 8:219.1鈥?19.5 CrossRef
    25. Huang T, Wang P, Ye ZQ et al (2010) Prediction of deleterious non-synonymous SNPs based on protein interaction network and hybrid properties. PLoS ONE 5:11900鈥?1907 CrossRef
    26. Hubbard TJP, Aken BL, Ayling S et al (2009) Ensembl 2009. Nucleic Acids Res 37:690鈥?97 CrossRef
    27. Johnson MM, Houck J, Chen C (2005) Screening for deleterious non-synonymous single-nucleotide polymorphisms in genes involved in steroid hormone metabolism and response. Cancer Epidemiol Biomark Prev 4:1326鈥?329 CrossRef
    28. Karchin R, Diekhans M, Kelly L et al (2005) LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics 21:2814鈥?820 CrossRef
    29. Kato GJ (1999) Human genetic diseases of proteolysis. Hum Mutat 13:87鈥?8 CrossRef
    30. Khan S, Vihinen M (2007) Spectrum of disease-causing mutations in protein secondary structures. BMC Struct Biol 7:56鈥?4 CrossRef
    31. Kortemmea T, Morozova AV, Baker D (2003) An orientation dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein鈥損rotein complexes. J Mol Biol 326:1239鈥?259 CrossRef
    32. Kuhn R, Karolchik D, Zweig AS et al (2007) The UCSC genome browser database: update 2007. Nucleic Acids Res 35:668鈥?73 CrossRef
    33. Lanver D, Mendoza-Mendoza A, Brachmann A et al (2010) Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus / Ustilago maydis. Plant Cell 22:2085鈥?101 CrossRef
    34. Lastowska M, Cullinane C, Variend S et al (2001) Comprehensive genetic and histopathologic study reveals three types of neuroblastoma tumors. J Clin Oncol 19:3080鈥?090
    35. Lee PH, Shatkay H (2008) F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res 36:820鈥?24 CrossRef
    36. Lee PH, Shatkay H (2009) An integrative scoring system for ranking SNPs by their potential deleterious effects. Bioinformatics 25:1048鈥?055 CrossRef
    37. Li S-C, Goto NK, Williams KA et al (1996) 伪-Helical, but not 尾-sheet, propensity of proline is determined by peptide environment. Biochemistry 93:6676鈥?681
    38. Liaoa PY, Lee KH (2010) From SNPs to functional polymorphism: the insight into biotechnology applications. Biochem Eng J 49:149鈥?58 CrossRef
    39. Mah JTL, Low ESH, Lee E (2011) In silico SNP analysis and bioinformatics tools: a review of the state of the art to aid drug discovery. Drug Discov Today 16:800鈥?09 CrossRef
    40. Moore DJ, Zhang L, Dawson TM et al (2003) A missense mutation (L166P) in DJ-1, linked to familial Parkinson鈥檚 disease, confers reduced protein stability and impairs homo oligomerization. J Neurochem 87:1558鈥?567 CrossRef
    41. Ng P, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812鈥?814 CrossRef
    42. Ohira M, Kageyama H, Mihara M et al (2000) Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line. Oncogene 19:4302鈥?307 CrossRef
    43. Querol E, Perez-Pons JA, Mozo-Vularias A (1996) Analysis of protein conformational characteristics related to thermostability. Protein Eng 9:265鈥?71 CrossRef
    44. Ramensky V, Bork P, Sunyaev S (2002) Human nonsynonymous SNPs: server and survey. Nucleic Acids Res 30:3894鈥?900 CrossRef
    45. Reumers J, Schymkowitz J, Ferkinghoff-Borg J et al (2005) SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Res 33:527鈥?32 CrossRef
    46. Reumers J, Maurer-Stroh S, Schymkowitz J et al (2006) SNPeffect v2.0: a new step in investigating the molecular phenotypic effects of human non-synonymous SNPs. Bioinformatics 22:2183鈥?185 CrossRef
    47. Ryan M, Diekhans M, Lien S et al (2009) LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures. Bioinformatics 25:1431鈥?432 CrossRef
    48. Schor NF (1999) Neuroblastoma as a neurobiological disease. J Neurooncol 41:159鈥?66 CrossRef
    49. Schymkowitz J, Borg J, Stricher F et al (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:382鈥?88 CrossRef
    50. Shen J, Deininger PL, Zhao H (2006) Applications of computational algorithm tools to identify functional SNPs in cytokine genes. Cytokine 35:62鈥?6 CrossRef
    51. Shojaei-Brosseau T, Chompret A, Abel A et al (2004) Genetic epidemiology of neuroblastoma: a study of 426 cases at the Institute Gustave-Roussy in France. Pediatr Blood Cancer 42:99鈥?05 CrossRef
    52. Shortle S, Sondek J (1995) The emerging role of insertions and deletions in protein engineering. Curr Opin Biotechnol 6:387鈥?93 CrossRef
    53. Smith PJ, Zhang C, Wang J et al (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15:2490鈥?508 CrossRef
    54. Soengas MS, Alarcon RM, Yoshida H et al (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284:156鈥?59 CrossRef
    55. Suh Y, Vijg J (2005) SNP discovery in associating genetic variation with human disease phenotypes. Mutat Res 573:41鈥?3 CrossRef
    56. Sunyaev S, Ramanesky V, Bork P (2000) Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 16:198鈥?00 CrossRef
    57. Vu PK, Sakamoto KM (2000) Ubiquitin-mediated protein degradation in genetic diseases proteolysis and human disease. Mol Genet Metab 71:261鈥?66 CrossRef
    58. Wang Z, Moult J (2001) SNPs, protein structure, and disease. Hum Mutat 17:263鈥?70 CrossRef
    59. Waters PJ (2001) Degradation of mutant proteins, underlying 鈥渓oss of function鈥?phenotypes, plays a major role in genetic disease. Curr Issues Mol Biol 3:57鈥?5
    60. Wheeler DL, Barrett T, Benson DA et al (2008) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36:13鈥?1 CrossRef
    61. Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297:249鈥?60
    62. Yue P, Melamud E, Moult J (2006) SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics 7:166鈥?81 CrossRef
    63. Zhang XHF, Kangsamaksin T, Chao MSP et al (2005) Exon inclusion is dependent on predictable exonic splicing enhancers. Mol Cell Biol 25:7323鈥?332 CrossRef
    64. Zhivotovsky B, Orrenius S (2006) Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 27:1939鈥?945 CrossRef
    65. Zhu Y, Hoffman A, Wu X et al (2008) Correlating observed odds ratios from lung cancer case鈥揷ontrol studies to SNP functional scores predicted by bioinformatic tools. Mutat Res 639:80鈥?8 CrossRef
  • 作者单位:Arpita Kundu (1)
    Susmita Bag (1)
    Sudha Ramaiah (1)
    Anand Anbarasu (1)

    1. Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
文摘
To understand the role of CASP9 (Caspase-9) gene products in relation to neuroblastoma disease, we have analyzed the single nucleotide polymorphisms (SNPs) associated with this gene. This can help us understand the genetic variations that can alter the function of the gene products. A total of 941 SNPs are investigated for CASP9 gene. To determine whether a non-synonymous SNP (nsSNP) in this gene affects its protein product, we used certain computational tools which predicted one nsSNP, rs1052574, to have deleterious phenotypic effect. This polymorphic variant results in amino acid substitution from leucine to proline at 197 position, i.e., from acyclic amino acid to a 5-membered amino acid which resides in the buried area of the protein with a high level of conservation. This amino acid substitution shows a transition from helix to coil in the mutant protein. Hence, due to the complete alteration in the structural property of the amino acid side chain, the stability of the protein is reduced which may affect the function of CASP9 protein, leading to deregulation of apoptosis and neuroblastoma development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700