Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings
详细信息    查看全文
  • 作者:Ashish Ganvir ; Nicholas Curry ; Nicolaie Markocsan…
  • 关键词:axial injection ; columnar microstructure ; porosity ; suspension plasma spraying ; thermal conductivity ; thermal diffusivity
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1-2
  • 页码:202-212
  • 全文大小:4,079 KB
  • 参考文献:1.R.A. Miller, Current status of thermal barrier coatings—an overview, Surf. Coat. Technol., 1987, 30(1), p 1-11CrossRef
    2.U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.-M. Dorvaux, M. Poulain, R. Mevrel, and M. Caliez, Some recent trends in research and technology of advanced thermal barrier coatings, Aerosp. Sci. Technol., 2003, 7(1), p 73-80CrossRef
    3.N. Curry, N. Markocsan, L.A. stergren, X.-H. Li, and M. Dorfman, Evaluation of the lifetime and thermal conductivity of dysprosia-stabilized thermal barrier coating systems, J. Therm. Spray Technol., 2013, 22(6), p 864-872CrossRef
    4.U. Schulz, O. Bernardi, A. Ebach-Stahl, R. Vassen, and D. Sebold, Improvement of EB-PVD thermal barrier coatings by treatments of a vacuum plasma-sprayed bond coat, Surf. Coat. Technol., 2008, 203, p 160-170CrossRef
    5.T.R. Kakuda, A.M. Limarga, T.D. Bennett, and D.R. Clarke, Evolution of thermal properties of EB-PVD 7YSZ thermal barrier coatings with thermal cycling, Acta Mater., 2009, 57(8), p 2583-2591CrossRef
    6.A.F. Renteria, B. Saruhan, U. Schulz, H.-J. Raetzer-Scheibe, J. Haug, and A. Wiedenmann, Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs, Surf. Coat. Technol., 2006, 201(6), p 2611-2620CrossRef
    7.N. Curry, N. Markocsan, X.-H. Li, A. Tricoire, and M. Dorfman, Next generation thermal barrier coatings for the gas turbine industry, J. Therm. Spray Technol., 2011, 20(1-2), p 108-115CrossRef
    8.K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column formation in suspension plasma-sprayed coatings and resultant thermal properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828CrossRef
    9.H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123CrossRef
    10.A. Guignard, G. Mauer, R. Vassen, and D. Stover, Deposition and characteristics of submicrometer-structured thermal barrier coatings by suspension plasma spraying, J. Therm. Spray Technol., 2012, 21(3-4), p 416-424CrossRef
    11.A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vassen, and D. Stover, Review of new developments in suspension and solution precursor thermal spray processes, J. Therm. Spray Technol., 2011, 20(4), p 677-695CrossRef
    12.N. Curry, Z. Tang, N. Markocsan, and P. Nylen, Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings—thermal and lifetime performance, Surf. Coat. Technol., 2015, 268, p 15-23CrossRef
    13.A. Ganvir, N. Curry, N. Markocsan, P. Nylen, and F.-L. Toma, Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings, Surf. Coat. Technol., 2015, 268, p 70-76CrossRef
    14. A. Ganvir, N. Curry, S. Govindarajan, and N. Markocsan, Characterization of thermal barrier coatings produced by various thermal spray techniques using solid powder, suspension, and solution precursor feedstock material, Int. J. Appl. Ceram. Technol., 2015. doi:10.​1111/​ijac.​12472
    15.A. Ganvir, N. Curry, S. Bjorklund, N. Markocsan, and P. Nylen, Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204CrossRef
    16.J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to reduce the thermal conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151-152, p 383-391CrossRef
    17.H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr., 1967, 22(1), p 151-152CrossRef
    18.M. Yashima, S. Sasaki, M. Kakihana, Y. Yamaguchi, H. Arashi, and M. Yoshimura, Oxygen-induced structural change of the tetragonal phase around the tetragonal-cubic phase boundary in ZrO2-YO1.5 solid solutions, Acta Crystallogr. B, 1994, 50(6), p 663-672CrossRef
    19.ASTM C373-14a, Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products, ceramic tiles, and glass tiles, (ASTM International, West Conshohocken, PA, 2014). www.​astm.​org
    20.ImageJ Software, Image Processing and Analysis in Java. [Online]. http://​imagej.​nih.​gov/​ij/​ . Accessed: 17-Nov-2014.
    21.N. Curry and J. Donoghue, Evolution of thermal conductivity of dysprosia stabilised thermal barrier coating systems during heat treatment, Surf. Coat. Technol., 2012, 209, p 38-43CrossRef
    22.F. Cernuschi, P. Bison, and J.G. Sun, Thermal diffusivity of TBC: results of a small round robin test and considerations about the effect of the surface preparation and the measuring approach, Surf. Coat. Technol., 2014, 258, p 284-292CrossRef
    23.N. Curry, K. VanEvery, T. Snyder, and N. Markocsan, Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier, Coatings, 2014, 4(3), p 630-650CrossRef
    24.R. Taylor, Thermal conductivity determinations of thermal barrier coatings, Mater. Sci. Eng. A, 1998, 245(2), p 160-167CrossRef
    25.P. Sokolowski, L. Latka, L. Pawlowski, A. Ambroziak, S. Kozerski, and B. Nait-Ali, Characterization of microstructure and thermal properties of YCSZ coatings obtained by suspension plasma spraying, Surf. Coat. Technol., 2015, 268, p 147-152CrossRef
    26.P. Carpio, Q. Blochet, B. Pateyron, L. Pawlowski, M.D. Salvador, A. Borrell, and E. Sanchez, Correlation of thermal conductivity of suspension plasma sprayed yttria stabilized zirconia coatings with some microstructural effects, Mater. Lett., 2013, 107, p 370-373CrossRef
    27.H. Guo, S. Kuroda, and H. Murakami, Microstructures and properties of plasma-sprayed segmented thermal barrier coatings, J. Am. Ceram. Soc., 2006, 89(4), p 1432-1439CrossRef
    28.R.W. Trice, Y.J. Su, J.R. Mawdsley, K.T. Faber, A.R.D. Arellano-Lopez, H. Wang, and W.D. Porter, Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ, J. Mater. Sci., 2002, 37(11), p 2359-2365CrossRef
    29.C.G. Levi, Emerging materials and processes for thermal barrier systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91CrossRef
    30.A. Bacciochini, G. Montavon, J. Ilavsky, A. Denoirjean, and P. Fauchais, Porous architecture of SPS thick YSZ coatings structured at the nanometer scale (~50 nm), J. Therm. Spray Technol., 2010, 19(1-2), p 198-206CrossRef
    31.F. Cernuschi, P. Bianchi, M. Leoni, and P. Scardi, Thermal diffusivity/microstructure relationship in Y-PSZ thermal barrier coatings, J. Therm. Spray Technol., 1999, 8(1), p 102-109CrossRef
    32.G. Soyez, J.A. Eastman, L.J. Thompson, G.R. Bai, P.M. Baldo, and A.W. McCormick, Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition, Am. Inst. Phys., 2000, 77(8), p 1155-1157
    33.I.O. Golosnoy, S.A. Tsipas, and T.W. Clyne, An analytical model for simulation of heat flow in plasma-sprayed thermal barrier coatings, J. Therm. Spray Technol., 2005, 14(2), p 205-214CrossRef
  • 作者单位:Ashish Ganvir (1)
    Nicholas Curry (1)
    Nicolaie Markocsan (1)
    Per Nylén (1)
    Shrikant Joshi (1)
    Monika Vilemova (2)
    Zdenek Pala (2)

    1. University West, 46186, Trollhättan, Sweden
    2. IPP, Prague, Czech Republic
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
Suspension plasma spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings (TBCs) and enables production of coatings with a variety of structures—highly dense, highly porous, segmented, or columnar. This work investigates suspension plasma-sprayed TBCs produced using axial injection with different process parameters. The influence of coating microstructure on thermal properties was of specific interest. Tests carried out included microstructural analysis, phase analysis, determination of porosity, and pore size distribution, as well as thermal diffusivity/conductivity measurements. Results showed that axial suspension plasma spraying process makes it possible to produce various columnar-type coatings under different processing conditions. Significant influence of microstructural features on thermal properties of the coatings was noted. In particular, the process parameter-dependent microstructural attributes, such as porosity, column density, and crystallite size, were shown to govern the thermal diffusivity and thermal conductivity of the coating.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700