Flocculation and viscoelastic behavior of industrial papermaking suspensions
详细信息    查看全文
  • 作者:Mustafa S. Nasser ; Mohammed J. Al-Marri…
  • 关键词:Papermaking Suspensions ; Flocculation ; Floc Size ; Effective Floc Density ; Rheology
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:33
  • 期:2
  • 页码:448-455
  • 全文大小:368 KB
  • 参考文献:1.J. Shen, Z. Song, X. Qian and F. Yang, Carbohydrate Polymers, 81, 545 (2010).CrossRef
    2.C. Pan, J. S. Fu, S. J. Yuan and F. Long, Chung-kuo Tsao Chih/China Pulp and Paper, 31, 30 (2012).
    3.J. A. F. Gamelas, A. F. Lourenço, M. Xavier and P. J. Ferreira, Chem. Eng. Res. Des., 92(11), 2425 (2014).CrossRef
    4.R. J. Kerekes, Nordic Pulp and Paper Research Journal, 21, 598 (2006).CrossRef
    5.M. S. Nasser, Sep. Purif. Technol., 122, 495 (2014).CrossRef
    6.M. S. Nasser, F. A. Twaiq and S. A. Onaizi, Sep. Purif. Technol., 103, 43 (2013).CrossRef
    7.S. Y. Lee and M. A. Hubbe, Colloids Surf., A: Physicochem. Eng. Aspects, 339, 118 (2009).
    8.M. R. Wu, J. Paris and T. G. M. van de Ven, Colloids Surf., A: Physicochem. Eng. Aspects, 303, 211 (2007).CrossRef
    9.D. H. Yoon, J. W. Jang and I. W. Cheong, Colloids Surf., A: Physicochem. Eng. Aspects, 411, 18 (2012).
    10.M. A. A. Razali, Z. Ahmad, M. S. B. Ahmad and A. Ariffin, Chem. Eng. J., 166, 529 (2011).CrossRef
    11.M. S. Nasser and A. E. James, Int. J. Miner. Process., 84, 144 (2007).CrossRef
    12.L. Feng and Y. Adachi, Colloids Surf., A: Physicochem. Eng. Aspects, 454, 128 (2014).
    13.T. Li, Z. Zhu, D. Wang, C. Yao and H. Tang, Int. J. Miner. Process., 82, 23 (2007).CrossRef
    14.E. A. López-Maldonado, M. T. Oropeza-Guzman, J. L. Jurado-Baizaval and A. Ochoa-Terán, J. Hazard. Mater., 279, 1 (2014).CrossRef
    15.M. S. Nasser, F. A. Twaiq and S. A. Onaizi, Miner. Eng., 30, 67 (2012).CrossRef
    16.L. De Martín, J. Sánchez-Prieto, F. Hernández-Jiménez and J. R. Van Ommen, J. Nanopart. Res., 16 (2014).
    17.A. Vahedi and B. Gorczyca, Water Res., 53, 322 (2014).CrossRef
    18.J. Wu and C. He, Int. J. Environ. Sci. Technol., 7, 37 (2010).CrossRef
    19.A. Z. Zinchenko and R. H. Davis, J. Fluid Mech., 742, 577 (2014).CrossRef
    20.M. S. Nasser and F. A. Twaiq, Chem. Eng. Res. Des., 89, 768 (2011).CrossRef
    21.W. P. Cheng, P. H. Chen, R. F. Yu, Y. J. Hsieh and Y. W. Huang, Int. J. Miner. Process., 100, 142 (2011).CrossRef
    22.D. Wang, R. Wu, Y. Jiang and C. W. K. Chow, Colloids Surf., A: Physicochem. Eng. Aspects, 379, 36 (2011).
    23.W. Xu, B. Gao, Q. Yue and Q. Wang, Sep. Purif. Technol., 78, 83 (2011).CrossRef
    24.H. Chi, H. Li, W. Liu and H. Zhan, Colloids Surf., A: Physicochem. Eng. Aspects, 297, 147 (2007).
    25.A. Ariffin, M. A. A. Razali and Z. Ahmad, Chem. Eng. J., 179, 107 (2012).CrossRef
    26.R. J. Stephenson and S. J. B. Duff, Water Res., 30, 781 (1996).CrossRef
    27.W. K. J. Mosse, D. V. Boger and G. Garnier, J. Rheol., 56, 1517 (2012).CrossRef
    28.B. Derakhshandeh, R. J. Kerekes, S. G. Hatzikiriakos and C. P. J. Bennington, Chem. Eng. Sci., 66, 3460 (2011).CrossRef
    29.J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, New York (1980).
    30.A. E. James and D. J. A. Williams, Adv. Colloid Interface Sci., 17, 219 (1982).CrossRef
    31.P. R. Williams, D. J. A. Williams and R. L. Williams, in "Theoretical and Applied Rheology", P. M. Keunings, Ed., pp. 949, Elsevier, Amsterdam (1992).
    32.P. R. Williams, D. J. A. Williams and R. L. Williams, Colloids Surf., A: Physicochem. Eng. Aspects, 77, 75 (1993).
    33.D. V. Boger, Exp. Therm. Fluid Sci., 12, 234 (1996).CrossRef
    34.M. S. Nasser and A. E. James, Colloids Surf., A: Physicochem. Eng. Aspects, 317, 211 (2008).
    35.M. Balaban, A. R. Carrillo and J. L. Kokini, Journal of Texture Studies, 19, 171 (1988).CrossRef
    36.M. Peleg, J. Rheol., 24, 451 (1980).CrossRef
    37.W. J. Chen, Sep. Sci. Technol., 33, 569 (1998).CrossRef
    38.M. S. Nasser and A. E. James, Sep. Purif. Technol., 52, 241 (2006).CrossRef
    39.W. Al-Sadat, M. S. Nasser, F. Chang, H. A. Nasr-El-Din and I. A. Hussein, Journal of Petroleum Science and Engineering, 122, 458 (2014).CrossRef
  • 作者单位:Mustafa S. Nasser (1)
    Mohammed J. Al-Marri (1)
    Abdelbaki Benamor (1)
    Sagheer A. Onaizi (2)
    Majeda Khraisheh (3)
    Mohammed A. Saad (3)

    1. Gas Processing Center, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
    2. School of Chemical Engineering and Advanced Materials, Newcastle University, 535 Clementi Road, Blk 35 #02-01, Singapore, 599489, Singapore
    3. Department of Chemical engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Industrial Chemistry and Chemical Engineering
    Catalysis
    Materials Science
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1975-7220
文摘
The effects of the surface charge type and density C496, C492 and A130LMW polyacrylamides (PAMs) on the rheological behavior of real industrial papermaking suspensions were quantitatively related to the degree of flocculation for the same industrial papermaking suspensions. The floc sizes were larger but less dense when anionic PAM was used, and this due to the repulsive forces between the anionic PAM and colloidal particles, leading to the development of open structure flocs of less density. On the other hand, rheological measurements showed that the papermaking suspension is thixotropic with a measurable yield stress. The results showed that the magnitude of the critical stress, τ c , complex viscosity, η*, elastic modulus, G′, and viscous modulus, G″, depend on the number of interactions between the PAM chains and particle surface and the strength of those interactions. Cationic PAM showed higher values of η*, G′, G″ and τ c compared to anionic PAM. This behavior is in good agreement with Bingham yield stress, τ B , adsorption and effective floc density results. Similar to oscillatory measurements, creep measurements also showed that the deformation was much lower for the cationic PAM based suspensions than for the anionic PAM based suspensions. Furthermore, the results revealed that increasing the cationic PAM surface charge decreases the floc size but increases the adsorption rate, elasticity and effective floc density proposing differences in the floc structures, which are not revealed clearly in the Bingham yield stress measurements. Keywords Papermaking Suspensions Flocculation Floc Size Effective Floc Density Rheology

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700