Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards
详细信息    查看全文
  • 作者:Suzanne V Saenko (1)
    Jérémie Teyssier (2)
    Dirk van der Marel (2)
    Michel C Milinkovitch (1)
  • 关键词:Physics of biology ; Structural colors ; Pigmentary colors ; Color patterns ; Iridophores ; Chromatophores ; Reptiles ; Lizards ; Phelsuma
  • 刊名:BMC Biology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:11
  • 期:1
  • 全文大小:1,251 KB
  • 参考文献:1. Protas ME, Patel NH: Evolution of coloration patterns. / Annu Rev Cell Dev Biol 2008, 24:425-46. CrossRef
    2. Hubbard JK, Uy JA, Hauber ME, Hoekstra HE, Safran RJ: Vertebrate pigmentation: from underlying genes to adaptive function. / Trends Genet 2010, 26:231-39. j.tig.2010.02.002" target="_blank" title="It opens in new window">CrossRef
    3. Doucet SM, Meadows MG: Iridescence: a functional perspective. / J R Soc Interface 2009, 6:S115-S132. CrossRef
    4. Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A, Mullen SP, Protas M, Rosenblum EB, Schneider CJ, Hoekstra HE: Unraveling the thread of nature’s tapestry: the genetics of diversity and convergence in animal pigmentation. / Pigment Cell Melanoma Res 2012, 25:411-33. j.1755-148X.2012.01014.x" target="_blank" title="It opens in new window">CrossRef
    5. Fox DL: / Animal biochromes and structural colours: physical, chemical, distributional and physiological features of coloured bodies in the animal world. Berkeley: University of California Press; 1976.
    6. Bagnara JT, Matsumoto J: Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In / The Pigmentary System. 2nd edition. Edited by: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oetting WS, Ortonne J-P. Hoboken, NJ: Blackwell Publishing; 2006:11-9. CrossRef
    7. Kinoshita S, Yoshioka S: Structural colors in nature: the role of regularity and irregularity in the structure. / Chem Phys Chem 2005, 6:1442-459. CrossRef
    8. Kuriyama T, Miyaji K, Sugimoto M, Hasegawa M: Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus ) with conspicuous body and tail coloration. / Zool Sci 2006, 23:793-99. j.23.793" target="_blank" title="It opens in new window">CrossRef
    9. Taylor JD, Hadley ME: Chromatophores and color change in the lizard, Anolis carolinensis . / Z Zellforsch Mikrosk Anat 1970, 104:282-94. CrossRef
    10. Milinkovitch MC, Tzika A: Escaping the mouse trap: the selection of new Evo-Devo model species. / J Exp Zool B Mol Dev Evol 2007, 308:337-46. jez.b.21180" target="_blank" title="It opens in new window">CrossRef
    11. Shawkey MD, Morehouse NI, Vukusic P: A protean palette: colour materials and mixing in birds and butterflies. / J R Soc Interface 2009, 6:S221-S231. CrossRef
    12. Prum RO, Dufresne ER, Quinn T, Waters K: Development of colour-producing beta-keratin nanostructures in avian feather barbs. / J R Soc Interface 2009, 6:S253-S265. CrossRef
    13. Rohrlich ST, Porter KR: Fine structural observations relating to the production of color by the iridophores of a lizard Anolis carolinensis . / J Cell Biol 1972, 53:38-2. jcb.53.1.38" target="_blank" title="It opens in new window">CrossRef
    14. Morrison RL: A transmission electron microscopic (TEM) method for determining structural colors reflected by lizard iridophores. / Pigment Cell Res 1995, 8:28-6. j.1600-0749.1995.tb00771.x" target="_blank" title="It opens in new window">CrossRef
    15. Morrison RL, Rand MS, Frost-Mason SK: Cellular basis of color differences in three morphs of the lizard Sceloporus undulatus erythrocheilus . / Copeia 1995, 2:397-08. CrossRef
    16. Morrison RL, Sherbrooke WC, Frostmason SK: Temperature-sensitive, physiologically active iridophores in the lizard Urosaurus ornatus : an ultrastructural analysis of color change. / Copeia 1996, 4:804-12. CrossRef
    17. Rosenblum EB, R?mpler H, Sch?neberg T, Hoekstra HE: Molecular and functional basis of phenotypic convergence in white lizards at White Sands. / Proc Natl Acad Sci U S A 2010, 107:2113-117. CrossRef
    18. Nunes VL, Miraldo A, Beaumont MA, Butlin RK, Paulo OS: Association of Mc1r variants with ecologically relevant phenotypes in the European ocellated lizard, Lacerta lepida . / J Evol Biol 2011, 24:2289-298. j.1420-9101.2011.02359.x" target="_blank" title="It opens in new window">CrossRef
    19. Rocha S, Vences M, Glaw F, Posada D, Harris DJ: Multigene phylogeny of Malagasy day geckos of the genus Phelsuma . / Mol Phylogenet Evol 2009, 52:530-37. j.ympev.2009.03.032" target="_blank" title="It opens in new window">CrossRef
    20. Rocha S, R?sler H, Gehring P-S, Glaw F, Posada D, Harris DJ, Vences M: Phylogenetic systematics of day geckos, genus Phelsuma , based on molecular and morphological data (Squamata: Gekkonidae). / Zootaxa 2010, 2429:1-8.
    21. Bagnara JT, Taylor JD, Hadley ME: The dermal chromatophore unit. / J Cell Biol 1968, 38:67-9. jcb.38.1.67" target="_blank" title="It opens in new window">CrossRef
    22. Armstrong TN, Cronin TW, Bradley BP: Microspectrophotometric analysis of intact chromatophores of the Japanese medaka, Oryzias latipes . / Pigment Cell Res 2000, 13:116-19. j.1600-0749.2000.130210.x" target="_blank" title="It opens in new window">CrossRef
    23. Junqueira LCU, Alves Lima MH, Farias EC: Carotenoid and pterin pigment localization in fish chromatophores. / Biotechnic Histochemistry 1978, 53:91-4. CrossRef
    24. Wijnen B, Leertouwer HL, Stavenga DG: Colors and pterin pigmentation of pierid butterfly wings. / J Insect Physiol 2007, 53:1206-217. j.jinsphys.2007.06.016" target="_blank" title="It opens in new window">CrossRef
    25. Feng Z, Liang C, Li M, Chen J, Li C: Surface-enhanced Raman scattering of xanthopterin adsorbed on colloidal silver. / J Raman Spectr 2001, 32:1004-007. jrs.789" target="_blank" title="It opens in new window">CrossRef
    26. Mol J, Grotewold E, Koes R: How genes paint flowers and seeds. / Trends Plant Sci 1998, 3:212-17. CrossRef
    27. Futahashi R, Kurita R, Mano H, Fukatsu T: Redox alters yellow dragonflies into red. / Proc Natl Acad Sci U S A 2012, 109:12626-2631. CrossRef
    28. Prum RO, Torres R: Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. / J Exp Biol 2003, 206:2409-429. jeb.00431" target="_blank" title="It opens in new window">CrossRef
    29. Bagnara JT, Fernandez PJ, Fujii R: On the blue coloration of vertebrates. / Pigment Cell Res 2007, 20:14-6. j.1600-0749.2006.00360.x" target="_blank" title="It opens in new window">CrossRef
    30. Seago AE, Brady P, Vigneron JP, Schultz TD: Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). / J R Soc Interface 2009, 6:S165-S184. CrossRef
    31. Orfanidis SJ: Multilayer film applications. / Electromagnetic Waves and Antennas [http://www.ece.rutgers.edu/~orfanidi/ewa/ch08.pdf]
    32. Kinoshita S: / Structural colours in the realm of nature. Singapore: World Scientific; 2008. CrossRef
    33. Fink Y, Winn JN, Fan S, Chen C, Michel J, Joannopoulos JD, Thomas EL: A dielectric omnidirectional reflector. / Science 1998, 282:1679-682. CrossRef
    34. Yoshioka S, Kinoshita S: Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly. / Proc Biol Sci 2007, 273:129-34. CrossRef
    35. Vukusic P, Hallam B, Noyes J: Brilliant whiteness in ultrathin beetle scales. / Science 2007, 315:348. CrossRef
    36. Levy-Lior A, Shimoni E, Schwartz O, Gavish-Regev E, Oron D, Oxford G, Weiner S, Addadi L: Guanine-based biogenic photonic-crystal arrays in fish and spiders. / Adv Funct Mat 2009, 20:320-29. CrossRef
    37. Vigneron JP, Simonis P: Structural colours. In / Advances in Insect Physiology: Insect Integument and Colour, Volume 38. Edited by: Casas J, Simpson SJ. Amsterdam, The Netherlands: Elsevier; 2010:181-18. CrossRef
    38. Shawkey MD, Hill GE: Carotenoids need structural colours to shine. / Biol Lett 2005, 1:121-24. CrossRef
    39. M?thger LM, Senft SL, Gao M, Karaveli S, Bell GRR, Zia R, Kuzirian AM, Dennis PB, Crookes-Goodson WJ, Naik RR, Kattawar GW, Hanlon RT: Bright white scattering from protein spheres in color changing, flexible cuttlefish skin. / Adv Funct Mater 2013, 23:3980-989. CrossRef
    40. D’Alba L, Kieffer L, Shawkey MD: Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar ( Melopsittacus undulatus ) feathers. / J Exp Biol 2012, 215:1272-277. jeb.064907" target="_blank" title="It opens in new window">CrossRef
    41. Grether GF, Kolluru GR, Nersissian K: Individual colour patches as multicomponent signals. / Biol Rev Camb Philos Soc 2004, 79:583-10. CrossRef
    42. Ziegler I: The pteridine pathway in zebrafish: regulation and specification during the determination of neural crest cell-fate. / Pigment Cell Res 2003, 16:172-82. j.1600-0749.2003.00044.x" target="_blank" title="It opens in new window">CrossRef
    43. Lopes SS, Yang X, Müller J, Carney TJ, McAdow AR, Rauch GJ, Jacoby AS, Hurst LD, Delfino-Machín M, Haffter P, Geisler R, Johnson SL, Ward A, Kelsh RN: Leukocyte tyrosine kinase functions in pigment cell development. / PLoS Genet 2008, 4:e1000026. journal.pgen.1000026" target="_blank" title="It opens in new window">CrossRef
    44. Schonthaler HB, Fleisch VC, Biehlmaier O, Makhankov Y, Rinner O, Bahadori R, Geisler R, Schwarz H, Neuhauss SC, Dahm R: The zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. / Development 2008, 135:387-99. CrossRef
    45. Glaw F, Vences M: / A field guide to the amphibians and reptiles of Madagascar. 3rd edition. Vences & Glaw Verlag: Cologne; 2007.
    46. Henkel F-W, Schmidt W: / Amphibians and reptiles of Madagascar and the Mascarene, Seychelles, and Comoro Islands. Florida: Krieger Publishing Company; 2000.
    47. Sch?necker P: / Geckos of Madagascar, the Seychelles, Comoros and Mascarene islands. Chimaira: Frankfurt am Main; 2008.
    48. / The comprehensive site to Phelsuma's. http://www.phelsumaweb.nl
    49. / The Phelsuma Information Platform by Emmanuel Van Heygen. http://www.phelsuma.org
    50. / The Greg & Leann's leaping lizards day geckos. http://www.daygecko.com
    51. Roduit N: / JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.2.2. jmicrovision.com" class="a-plus-plus">http://www.jmicrovision.com
    52. Clark LB: Electronic spectra of crystalline 9-ethylguanine and guanine hydrochloride. / J Am Chem Soc 1977, 99:3934-938. ja00454a006" target="_blank" title="It opens in new window">CrossRef
    53. Land MF: A multilayer interference reflector in the eye of the scallop, Pecten maximus . / J Exp Biol 1966, 45:433-47.
    54. Carey PR: Raman spectroscopy, the sleeping giant in structural biology, awakes. / J Biol Chem 1999, 274:26625-6628. jbc.274.38.26625" target="_blank" title="It opens in new window">CrossRef
  • 作者单位:Suzanne V Saenko (1)
    Jérémie Teyssier (2)
    Dirk van der Marel (2)
    Michel C Milinkovitch (1)

    1. Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Sciences III, 30, Quai Ernest-Ansermet, 1211, Genève 4, Switzerland
    2. Department of Condense Matter Physics, University of Geneva, Geneva, Switzerland
  • ISSN:1741-7007
文摘
Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive variation in lizard color patterns. Our results indicate the need to identify the developmental mechanisms responsible for the control of the size, shape, and orientation of nanocrystals, and the superposition of specific chromatophore types. This study opens up new perspectives on Phelsuma lizards as models in evolutionary developmental biology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700