Vesicular transport system in myotubes: ultrastructural study and signposting with vesicle-associated membrane proteins
详细信息    查看全文
  • 作者:Yuki Tajika (1)
    Maiko Takahashi (1)
    Astrid Feinisa Khairani (1)
    Hitoshi Ueno (1)
    Tohru Murakami (1)
    Hiroshi Yorifuji (1)
  • 关键词:Skeletal muscle ; Myotube ; SNARE ; VAMP ; T ; tubule
  • 刊名:Histochemistry and Cell Biology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:141
  • 期:4
  • 页码:441-454
  • 全文大小:1,515 KB
  • 参考文献:1. Advani RJ, Yang B, Prekeris R et al (1999) VAMP-7 mediates vesicular transport from endosomes to lysosomes. J Cell Biol 146:765鈥?76 CrossRef
    2. Al-Qusairi L, Laporte J (2011) T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle 1:26. doi:10.1186/2044-5040-1-26 CrossRef
    3. Bao ZZ, Lakonishok M, Kaufman S, Horwitz AF (1993) Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci 106:579鈥?89. doi:10.1093/hmg/ddp362
    4. Baumert M, Maycox PR, Navone F et al (1989) Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J 8:379鈥?84
    5. Braiman L, Alt A, Kuroki T et al (2001) Activation of protein kinase czeta induces serine phosphorylation of VAMP2 in the GLUT4 Compartment and increases glucose transport in skeletal muscle. Mol Cell Biol 21:7852鈥?861. doi:10.1128/MCB.21.22.7852- 7861.2001 CrossRef
    6. Burattini S, Ferri P, Battistelli M et al (2004) C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur J Histochem 48:223鈥?33
    7. Chaineau M, Danglot L, Galli T (2009) Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett 583:3817鈥?826. doi:10.1016/j.febslet.2009.10.026 CrossRef
    8. Curci R, Battistelli M, Burattini S et al (2008) Surface and inner cell behaviour along skeletal muscle cell in vitro differentiation. Micron 39:843鈥?51. doi:10.1016/j.micron.2007.12.007 CrossRef
    9. Flucher BE, Terasaki M, Chin HM et al (1991) Biogenesis of transverse tubules in skeletal muscle in vitro. Dev Biol 145:77鈥?0 CrossRef
    10. Furuta N, Fujita N, Noda T et al (2010) Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell 21:1001鈥?010. doi:10.1091/mbc.E09-08-0693 CrossRef
    11. Golini L, Chouabe C, Berthier C et al (2011) Junctophilin 1 and 2 proteins interact with the L-type Ca2+ channel dihydropyridine receptors (DHPRs) in skeletal muscle. J Biol Chem 286:43717鈥?3725. doi:10.1074/jbc.M111.292755 CrossRef
    12. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610鈥?38. doi:10.1016/j.neuron.2010.09.039 CrossRef
    13. Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:120鈥?44. doi:10.1016/j.bbamcr.2005.03.014 CrossRef
    14. Ishikawa H (1968) Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J Cell Biol 38:51鈥?6 CrossRef
    15. Lee E (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193鈥?196. doi:10.1126/science.1071362 CrossRef
    16. Lu Z, Joseph D, Bugnard E et al (2001) Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism. Mol Biol Cell 12:795鈥?08 CrossRef
    17. McMahon HT, Ushkaryov YA, Edelmann L et al (1993) Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364:346鈥?49. doi:10.1038/364346a0 CrossRef
    18. McMahon HT, Kozlov MM, Martens S (2010) Membrane curvature in synaptic vesicle fusion and beyond. Cell 140:601鈥?05. doi:10.1016/j.cell.2010.02.017 CrossRef
    19. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313鈥?26. doi:10.1016/j.cell.2010.01.028 CrossRef
    20. Neville C, Rosenthal N, McGrew M et al (1997) Methods Cell Biol 52:85鈥?16 CrossRef
    21. Parton R, Way M, Zorzi N, Stang E (1997) Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136:137鈥?54 CrossRef
    22. Proux-Gillardeaux V, Gavard J, Irinopoulou T et al (2005) Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion. Proc Natl Acad Sci USA 102:6362鈥?367. doi:10.1073/pnas.0409613102 CrossRef
    23. Randhawa VK, Bilan PJ, Khayat ZA et al (2000) VAMP2, but not VAMP3/cellubrevin, mediates insulin-dependent incorporation of GLUT4 into the plasma membrane of L6 myoblasts. Mol Biol Cell 11:2403鈥?417 CrossRef
    24. Rappoport JZ (2008) Focusing on clathrin-mediated endocytosis. Biochem J 412:415. doi:10.1042/BJ20080474 CrossRef
    25. Rossetto O (1996) VAMP/synaptobrevin isoforms 1 and 2 are widely and differentially expressed in nonneuronal tissues. J Cell Biol 132:167鈥?79 CrossRef
    26. Rossi D, Barone V, Giacomello E et al (2008) The sarcoplasmic reticulum: an organized patchwork of specialized domains. Traffic 9:1044鈥?049. doi:10.1111/j.1600-0854.2008.00717.x CrossRef
    27. Roth TF, Porter KR (1964) Yolk protein uptake in the oocyte of the mosquito / Aedes aegypti L. J Cell Biol 20:313鈥?32 CrossRef
    28. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791鈥?05. doi:10.1038/35097557 CrossRef
    29. Segev N (2011) Coordination of intracellular transport steps by GTPases. Semin Cell Dev Biol 22:33鈥?8. doi:10.1016/j.semcdb.2010.11.005 CrossRef
    30. Singhal N, Martin PT (2011) Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 71:982鈥?005. doi:10.1002/dneu.20953 CrossRef
    31. Skalski M, Yi Q, Kean MJ et al (2010) Lamellipodium extension and membrane ruffling require different SNARE-mediated trafficking pathways. BMC Cell Biol 11:62. doi:10.1186/1471-2121-11-62 CrossRef
    32. Sorrentino V (2011) Sarcoplasmic reticulum: structural determinants and protein dynamics. Int J Biochem Cell Biol 43:1075鈥?078. doi:10.1016/j.biocel.2011.04.004 CrossRef
    33. Steegmaier M, Klumperman J (1999) Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol Biol Cell 10:1957鈥?972 CrossRef
    34. Stenoien DL, Knyushko TV, Londono MP et al (2007) Cellular trafficking of phospholamban and formation of functional sarcoplasmic reticulum during myocyte differentiation. Am J Physiol Cell Physiol 292:C2084鈥揅2094. doi:10.1152/ajpcell.00523.2006 CrossRef
    35. S眉dhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474鈥?77. doi:10.1126/science.1161748 CrossRef
    36. Tajika Y, Sato M, Murakami T et al (2007) VAMP2 is expressed in muscle satellite cells and up-regulated during muscle regeneration. Cell Tissue Res 328:573鈥?81. doi:10.1007/s00441-006-0376-0 CrossRef
    37. Tajika Y, Murakami T, Sato M et al (2008) VAMP2 is expressed in myogenic cells during rat development. Dev Dyn 237:1886鈥?892. doi:10.1002/dvdy.21596 CrossRef
    38. Tajika Y, Takahashi M, Hino M et al (2010) VAMP2 marks quiescent satellite cells and myotubes, but not activated myoblasts. Acta Histochem Cytochem 43:107鈥?14. doi:10.1267/ahc.10010 CrossRef
    39. Takahashi M, Tajika Y, Khairani AF et al (2013) The localization of VAMP5 in skeletal and cardiac muscle. Histochem Cell Biol 139:573鈥?82. doi:10.1007/s00418-012-1050-0 CrossRef
    40. Takekura H, Flucher BE, Franzini-Armstrong C (2001) Sequential docking, molecular differentiation, and positioning of T-tubule/SR junctions in developing mouse skeletal muscle. Developmental Biology 239:204鈥?14. doi:10.1006/dbio2001.0437 CrossRef
    41. Tayeb MA, Skalski M, Cha MC et al (2005) Inhibition of SNARE-mediated membrane traffic impairs cell migration. Exp Cell Res 305:63鈥?3. doi:10.1016/j.yexcr.2004.12.004 CrossRef
    42. Tortorella LL, Pilch PF (2002) C2C12 myocytes lack an insulin-responsive vesicular compartment despite dexamethasone-induced GLUT4 expression. Am J Physiol Endocrinol Metab 283:E514鈥揈524. doi:10.1152/ajpendo.00092.2002
    43. Towler MC, Kaufman SJ, Brodsky FM (2004) Membrane traffic in skeletal muscle. Traffic 5:129鈥?39. doi:10.1111/j.1600-0854.2003.00164.x CrossRef
    44. Trimble WS, Cowan DM, Scheller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci USA 85:4538鈥?542 CrossRef
    45. van Kerkhof P, Lee J, McCormick L et al (2005) Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J 24:2851鈥?861. doi:10.1038/sj.emboj.7600756 CrossRef
    46. Veale KJ, Offenh盲user C, Lei N et al (2011) VAMP3 regulates podosome organisation in macrophages and together with Stx4/SNAP23 mediates adhesion, cell spreading and persistent migration. Exp Cell Res 317:1817鈥?829. doi:10.1016/j.yexcr.2011.04.016 CrossRef
    47. Wang C-C, Ng CP, Shi H et al (2010) A role for VAMP8/endobrevin in surface deployment of the water channel aquaporin 2. Mol Cell Biol 30:333鈥?43. doi:10.1128/MCB.00814-09 CrossRef
    48. Zeng Q, Subramaniam VN, Wong SH et al (1998) A novel synaptobrevin/VAMP homologous protein (VAMP5) is increased during in vitro myogenesis and present in the plasma membrane. Mol Biol Cell 9:2423鈥?437 CrossRef
  • 作者单位:Yuki Tajika (1)
    Maiko Takahashi (1)
    Astrid Feinisa Khairani (1)
    Hitoshi Ueno (1)
    Tohru Murakami (1)
    Hiroshi Yorifuji (1)

    1. Department of Anatomy, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
  • ISSN:1432-119X
文摘
Myofibers have characteristic membrane compartments in their cytoplasm and sarcolemma, such as the sarcoplasmic reticulum, T-tubules, neuromuscular junction, and myotendinous junction. Little is known about the vesicular transport that is believed to mediate the development of these membrane compartments. We determined the locations of organelles in differentiating myotubes. Electron microscopic observation of a whole myotube revealed the arrangement of Golgi apparatus, rough endoplasmic reticulum, autolysosomes, mitochondria, and smooth endoplasmic reticulum from the perinuclear region toward the end of myotubes and the existence of a large number of vesicles near the ends of myotubes. Vesicles in myotubes were further characterized using immunofluorescence microscopy to analyze expression and localization of vesicle-associated membrane proteins (VAMPs). VAMPs are a family of seven proteins that regulate post-Golgi vesicular transport via the fusion of vesicles to the target membranes. Myotubes express five VAMPs in total. Vesicles with VAMP2, VAMP3, or VAMP5 were found near the ends of the myotubes. Some of these vesicles are also positive for caveolin-3, suggesting their participation in the development of T-tubules. Our morphological analyses revealed the characteristic arrangement of organelles in myotubes and the existence of transport vesicles near the ends of the myotubes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700