Critical radius of zirconia inclusions in transformation toughening of ceramics
详细信息    查看全文
  • 作者:R. A. Filippov (1) (2)
    A. B. Freidin (1) (2) (3)
    I. V. Hussainova (4)
    E. N. Vilchevskaya (1) (2)

    1. Institute of Problems of Mechanical Engineering
    ; Russian Academy of Sciences ; St. Petersburg ; 199178 ; Russia
    2. St. Petersburg State Polytechnical University
    ; St. Petersburg ; 195251 ; Russia
    3. St. Petersburg State University
    ; St. Petersburg ; 198504 ; Russia
    4. Tallinn University of Technology
    ; Tallinn ; 19086 ; Estonia
  • 关键词:ceramics ; transformation toughening ; fracture ; zirconia ; phase transformation ; energy barrier ; composites ; effective field
  • 刊名:Physical Mesomechanics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:18
  • 期:1
  • 页码:33-42
  • 全文大小:161 KB
  • 参考文献:1. Basu, B (2005) Toughening of Yttria-Stabilised Tetragonal Zirconia Ceramics. Int. Mater. Rev. 50: pp. 239-259 CrossRef
    2. Kelly, PM, Francis Rose, LR (2002) The Martensitic Transformation in Ceramics鈥擨ts Role in Transformation Toughening. Prog. Mater. Sci. 47: pp. 463-557 CrossRef
    3. Evans, AG, Burlingame, N, Drory, M, Kriven, WM (1981) Martensitic Transformations in Zirconia鈥擯article Size Effects and Toughening. Acta Metall. 29: pp. 447-456 CrossRef
    4. Milyavskii, VV, Savinykh, AS, Akopov, FA, Borovkova, LB, Borodina, TI, Val鈥檡ano, GE, Ziborov, VS, Lukin, ES, Popova, NA (2011) A Ceramic Based on Partially Stabilized Zirconia: Synthesis, Structure, and Properties under Dynamic Load. High Temp. 49: pp. 685-689 CrossRef
    5. Alfonso, BL, Yuichiro, M, Masanori, K, Merrilea, J (2002) Fracture Toughness of Nanocrystalline Tetragonal Zirconia with Low Yttria Content. Acta Mater. 50: pp. 4555-4562 CrossRef
    6. Karagedov, GR, Shatskaya, SS, Lyakhov, NZ (2006) Nature of a Mechanically Stimulated Phase Change in Zirconia. Chem. Sustain. Dev.. pp. 345-353
    7. Popov, VV, Petrunin, VF (2007) Study of the Formation and Stability of Metastable Phases in Nanocrystalline ZrO2. Ogneup. Tekh. Keram.. pp. 8-14
    8. Lange, FF (1982) Transformation Toughening. Part 1. J. Mater. Sci. 17: pp. 225-234 CrossRef
    9. Lange, FF (1982) Transformation Toughening. Part 3. J. Mater. Sci. 17: pp. 240-246 CrossRef
    10. Heuer, AH, Claussen, N, Kriven, WM, Ruhle, M (1982) Stability of Tetragonal ZrO2 Particles in Ceramic Matrices. J. Am. Ceram. Soc. 65: pp. 645-650 CrossRef
    11. Garvie, RC, Swain, MV (1985) Thermodynamics of the Tetragonal to Monoclinic Phase Transformation in Constrained Zirconia Microcrystals. Part 1. J. Mater. Sci. 20: pp. 1193-1200 CrossRef
    12. Garvie, RC (1985) Thermodynamics of the Tetragonal to Monoclinic Phase Transformation in Constrained Zirconia Microcrystals. Part 2. J. Mater. Sci. 20: pp. 3479-3486 CrossRef
    13. Lobodyuk, VA, Estrin, EI (2009) Martensitic Transformations. Fizmatlit, Moscow
    14. Kashchenko, MP, Chashchina, VG (2010) Critical Grain Size in the 纬 鈫?伪 Martensite Transformation. Thermodynamic Analysis with regard to Spatial Scales Characteristic of Martensite Nucleation. Phys. Mesomech. 13: pp. 189-194 CrossRef
    15. Kriven, WM (1990) Martensitic Toughening of Ceramics. J. Mater. Sci. Eng. A 127: pp. 249-255 CrossRef
    16. Aza, AH, Chevalier, J, Fantozzi, G, Schehl, M, Torrecillas, R (2002) Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses. Biomaterials 23: pp. 937-945 CrossRef
    17. Makoto, N (2005) High-Temperature Oxidation of Ceramic Matrix Composites Dispersed with Metallic Particles. Sci. Tech. Adv. Mater. 6: pp. 129-134 CrossRef
    18. Eshelby, JD (1957) The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proc. Roy. Soc. London. A 241: pp. 376-396 CrossRef
    19. Freidin, AB (2007) On New Phase Inclusions in Elastic Solids. Z. Angew. Math. Mech. 87: pp. 102-116 CrossRef
    20. Freidin, AB (2010) Fracture Mechanics. Eshelby Problem. Izd-vo SPbPU, St. Petersburg
    21. Liang, YM, Zhao, JH (1999) Effect of Zirconia Particles Size Distribution on the Toughness of Zirconia-Containing Ceramics. J. Mater. Sci. 34: pp. 2175-2181 CrossRef
    22. Kanaun, SK, Levin, VM (2007) Self-Consistent Methods for Composites. Vol. 1: Static Problems. Springer, Berlin
    23. Kanaun, SK, Levin, VM (1993) Effective Field Method in Composite Mechanics. Izd-vo Petrozavodsk. Univ., Petrozavodsk
    24. Balmori-Ramirez, H, Jaramillo-Vigueras, D, Rigaud, M (1995) Microstructure of Al2O3-PSZ(MgO) Composites. J. Mater. Sci. 14: pp. 603-605
    25. Green, DJ (1982) Critical Microstructures for Microcracking in Al2O3-ZrO2 Composites. J. Am. Ceram. Soc. 65: pp. 610-614 CrossRef
    26. Hussainova, I, Antonov, M, Voltsihhin, N (2011) Assessment of Zirconia Doped Hardmetals as Tribomaterials. Wear. pp. 1909-1915
    27. Bartolome, JF, Bruno, G, Deaza, AH (2008) Neutron Diffraction Residual Stress Analysis of Zirconia Toughened Alumina (ZTA) Composites. J. Euro. Ceramic Soc. 28: pp. 1809-1814 CrossRef
    28. Wang, X-L, Hubbard, CR, Alexander, KB, Becher, PF, Fernandez-Baca, JA, Spooner, S (1994) Neutron Diffraction Measurements of the Residual Stresses in Al2O3-ZrO2 Ceramic Composites. J. Amer. Ceram. Soc. 77: pp. 1569-1575 CrossRef
    29. Kern, F, Palermo, P (2013) Microstructure and Mechanical Properties of Alumina 5 vol % Zirconia Nanocomposites Prepared by Powder Coating and Powder Mixing Routes. Ceram. Int. 39: pp. 637-682 CrossRef
    30. Grabowski, G, Pedzich, Z (2007) Residual Stresses in Particulate Composites with Alumina and Zirconia Matrices. J. Euro. Ceram. Soc. 27: pp. 1287-1292 CrossRef
    31. Moriya, Y, Navrotsky, A (2006) High-Temperature Calorimetry of Zirconia: Heat Capacity and Thermodynamics of the Monoclinic-Tetragonal Phase Transition. J. Chem. Thermodynamics 38: pp. 211-223 CrossRef
    32. Tuan, H, Chen, RZ, Wang, TC, Cheng, PS, Kuo, PS (2002) Mechanical Properties of Al2O3/ZrO2 Composites. J. Euro. Ceram. Soc. 22: pp. 2827-2833 CrossRef
    33. Vilchevskaya, EN, Freidin, AB (2007) On Phase Transitions in a Domain of Material Inhomogeneity. I. Phase Transitions of Inclusions in a Homogeneous External Field. Mech. Solids 42: pp. 823-840 CrossRef
    34. Claussen, N (1976) Fracture Toughness of Al2O3 with an Unstabilized ZrO2 Dispersed Phase. J. Amer. Ceram. Soc. 59: pp. 49-51 CrossRef
    35. Babaev, AA, Khokhlachev, PP, Nikolaev, YuA, Terukov, EI, Freidin, AB, Filippov, RA, Filippov, AK, Manabaev, NK (2012) Nanocomposite Based on Modified Multiwalled Carbon Nanotubes: Fabrication by an Oriented Spinning Process and Electrical Conductivity. Inorg. Mater. 48: pp. 997-1000 CrossRef
    36. Suresh, A, Mayo, MJ, Porter, WD, Rawn, CJ (2003) Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia. J. Amer. Ceram. Soc. 86: pp. 360-362 CrossRef
    37. Chen, M, Hallstedt, B, Gauckler, LJ (2004) Thermodynamic Modeling of the ZrO2-YO1.5 System. Solid State Ionics 170: pp. 255-274 CrossRef
    38. Ge, QL, Lei, TC, Mao, JF, Zhou, Y (1993) In Situ Transmission Electron Microscopy Observations of the Tetragonal-to-Monoclinic Phase Transformation of Zirconia in Al2O3/ZrO2 (2 mol % Y2O3) Composite. J. Mater. Sci. Lett. 12: pp. 819-822 CrossRef
  • 刊物主题:Mechanics; Solid State Physics; Materials Science, general;
  • 出版者:Springer US
  • ISSN:1990-5424
文摘
The paper presents a transformation toughening model of ceramics taking into account an energy barrier the overcoming of which results in phase transformation of zirconia inclusions. Methods based on experimental data analysis are proposed for estimating the energy barrier. The size range of zirconia inclusions in Al2O3 and WC matrices is defined depending on the energy barrier value, working temperature, and external load. It is shown that the introduction of an energy barrier enables an adequate estimation of the size range of inclusions at which transformation toughening occurs in ceramics. The elastic interaction of inclusions is shown to cause a decrease in their critical radii with the growing volume density, which agrees with experimental data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700