Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts
详细信息    查看全文
  • 作者:Karin Pichler (1) (5)
    Tanja Kraus (2)
    Elisabeth Martinelli (1)
    Patrick Sadoghi (1)
    Giuseppe Musumeci (3)
    Peter J. Uggowitzer (4)
    Annelie M. Weinberg (1)
  • 关键词:Biodegradable magnesium ; Orthopaedics ; Immature skeleton ; Growth ; Biocompatibility
  • 刊名:International Orthopaedics
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:38
  • 期:4
  • 页码:881-889
  • 全文大小:990 KB
  • 参考文献:1. Ligier JN, Metaizeau JP, Prévot J (1983) Closed flexible medullary nailing in pediatric traumatology. Chir Pediatr 24(6):383-85
    2. Simanovsky N, Tair MA, Simanovsky N, Porat S (2006) Removal of flexible titanium nails in children. J Pediatr Orthop 26(2):188-92
    3. Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, Duszczyk J (2010) In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J Mater Sci Mater Med 21(9):2623-635
    4. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728-734
    5. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12(5-):63-2
    6. Claes LE (1992) Mechanical characterization of biodegradable implants. Clin Mater 10(1-):41-6
    7. H?nzi AC, Gerber I, Schinhammer M, L?ffler JF, Uggowitzer PJ (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater 6(5):1824-833
    8. Yu K, Chen L, Zhao J, Li S, Dai Y, Huang Q, Yu Z (2012) In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites. Acta Biomater 8(7):2845-855
    9. Krause A, H?h N, Bormann D, Krause C, Bach F-W, Windhagen H, Meyer-Lindenberg A (2010) Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci 45(3):624-32
    10. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557-563
    11. Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S, Weinberg AM (2011) Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater 7(1):432-40
    12. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston
    13. Kraus T, Fischerauer SF, H?nzi AC, Uggowitzer PJ, L?ffler JF, Weinberg AM (2012) Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater 8(3):1230-238
    14. Gu X, Zheng Y, Zhong S, Xi T, Wang J, Wang W (2010) Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials 31(6):1093-103
    15. Lu P, Cao L, Liu Y, Xu X, Wu X (2011) Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res B Appl Biomater 96(1):101-09
    16. Chung R, Foster BK, Xian CJ (2011) Injury responses and repair mechanisms of the injured growth plate. Front Biosci (Schol Ed) 3:117-25
    17. Davies JH, Evans BA, Jenney ME, Gregory JW (2002) In vitro effects of chemotherapeutic agents on human osteoblast-like cells. Calcif Tissue Int 70(5):408-15
    18. Pichler K, Schmidt B, Fischerauer EE, Rinner B, Dohr G, Leithner A, Weinberg AM (2012) Behaviour of human physeal chondro-progenitorcells in early growth plate injury response in vitro. Int Orthop 36(9):1961-966
    19. Lefebvre V, Peeters-Joris C, Vaes G (1990) Production of collagens, collagenase and collagenase inhibitor during the dedifferentiation of articular chondrocytes by serial subcultures. Biochim Biophys Acta 1051(3):266-75
    20. Chacko S, Abbott J, Holtzer S, Holtzer H (1969) The loss of phenotypic traits by differentiated cells. VI. Behavior of the progeny of a single chondrocyte. J Exp Med 130(2):417-42
    21. Coon HG (1966) Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A 55(1):66-3
    22. Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 75(3):200-12
    23. Gerstenfeld LC, Shapiro FD (1996) Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem 62(1):1-
    24. Gu XN, Xie XH, Li N, Zheng YF, Qin L (2012) In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 8(6):2360-374
    25. Zhou WR, Zheng YF, Leeflang MA, Zhou J (2013) Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. Acta Biomater 9(10):8488-498
    26. Del Gaudio C, Bagalà P, Venturini M, Grandi C, Parnigotto PP, Bianco A, Montesperelli G (2012) Assessment of in vitro temporal corrosion and cytotoxicity of AZ91D alloy. J Mater Sci Mater Med 23(10):2553-562
    27. Cipriano AF, Zhao T, Johnson I, Guan RG, Garcia S, Liu H (2013) In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells. J Mater Sci Mater Med 24(4):989-003
    28. Feyerabend F, Witte F, Kammal M, Willumeit R (2006) Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. Tissue Eng 12(12):3545-556
    29. Feser K, Kietzmann M, B?umer W, Krause C, Bach FW (2011) Effects of degradable Mg-Ca alloys on dendritic cell function. J Biomater Appl 25(7):685-97
    30. Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H, Vogt C, Hort N (2010) Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 6(5):1834-842
    31. Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, Cao L, Fan Q, Tang T (2010) In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials 31(22):5782-788
    32. Li L, Gao J, Wang Y (2004) Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf Coat Technol 185(1):92-8
    33. Pietak A, Mahoney P, Dias GJ, Staiger MP (2007) Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med 19(1):407-15
    34. Witte F, Feyerabend F, Maier P, Fischer J, St?rmer M, Blawert C, Dietzel W, Hort N (2007) Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 28(13):2163-174
    35. Yang C, Yuan G, Zhang J, Tang Z, Zhang X, Dai K (2010) Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed Mater 5(4):045005
    36. Zhang S, Li J, Song Y, Zhao C, Zhang X, Xie C, Zhang Y, Tao H, He Y, Jiang Y, Bian Y (2009) In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Mater Sci Eng C 29(6):1907-912
    37. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62(2):175-84
    38. Zreiqat H, Valenzuela SM, Nissan BB, Roest R, Knabe C, Radlanski RJ, Renz H, Evans PJ (2005) The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials 26(36):7579-586
    39. Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 21:441-83
    40. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456-69
    41. Gu XN, Li N, Zhou WR, Zheng YF, Zhao X, Cai QZ, Ruan L (2011) Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. Acta Biomater 7(4):1880-889
    42. Michalke B, Halbach S, Nischwitz V (2009) JEM spotlight: metal speciation related to neurotoxicity in humans. J Environ Monit 11(5):939-54
    43. Drynda A, Deinet N, Braun N, Peuster M (2009) Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. J Biomed Mater Res A 91(2):360-69
    44. Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104(Suppl 1):85-5
    45. Wells WH Jr, Wells VL (2012) The lanthanides, rare earth metals. In: Bingham E, Cohrssen B (eds) Patty’s toxicology. Wiley, Hoboken
  • 作者单位:Karin Pichler (1) (5)
    Tanja Kraus (2)
    Elisabeth Martinelli (1)
    Patrick Sadoghi (1)
    Giuseppe Musumeci (3)
    Peter J. Uggowitzer (4)
    Annelie M. Weinberg (1)

    1. Department of Orthopaedic Surgery, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
    5. Department of Orthopaedic Surgery, Medical University of Graz, Auenbruggerplatz 36, 8036, Graz, Austria
    2. Department of Paediatric Orthopaedic Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036, Graz, Austria
    3. Department of Bio-Medical Sciences, University of Catania, Via S.Sofia 87, 95100, Catania, Italy
    4. Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093, Zurich, Switzerland
  • ISSN:1432-5195
文摘
Purpose In recent decades operative fracture treatment using elastic stable intramedullary nails (ESINs) has mainly taken precedence over conservative alternatives in children. The development of biodegradable materials that could be used for ESINs would be a further step towards treatment improvement. Due to its mechanical and elastic properties, magnesium seems to be an ideal material for biodegradable implant application. The aim of this study was therefore to investigate the cellular reaction to biodegradable magnesium implants in vitro. Methods Primary human growth plate chondrocytes and MG63 osteoblasts were used for this study. Viability and metabolic activity in response to the eluate of a rapidly and a slower degrading magnesium alloy were investigated. Furthermore, changes in gene expression were assessed and live cell imaging was performed. Results A superior performance of the slower degrading WZ21 alloy’s eluate was detected regarding cell viability and metabolic activity, cell proliferation and morphology. However, the ZX50 alloy’s eluate induced a favourable up-regulation of osteogenic markers in MG63 osteoblasts. Conclusions This study showed that magnesium alloys for use in biodegradable implant application are well tolerated in both osteoblasts and growth plate chondrocytes respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700