A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores
详细信息    查看全文
  • 作者:Miguel Angel Celigueta ; Kedar M. Deshpande…
  • 关键词:FEM ; DEM procedure ; Motion of particles ; Drill cuttings ; Wellbores
  • 刊名:Computational Particle Mechanics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:3
  • 期:2
  • 页码:263-276
  • 全文大小:2,569 KB
  • 参考文献:1.Bourgoyne AT, Millheim KK, Chenevert ME, Young FS (1991) Applied drilling engineering. Society of Petroleum Engineers, Richardson
    2.Sifferman TR, Myers GM, Haden EL, Wahl HA (1974) Drill-cutting transport in full-scale vertical annuli. J Pet Technol 26:1–295CrossRef
    3.Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput Methods Appl Mech Eng 151:233–267MathSciNet CrossRef MATH
    4.Oñate E, Celigueta MA, Latorre S, Casas G, Rossi R, Rojek J (2014) Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput Part Mech 1:85–102CrossRef
    5.Zohdi T (2007) An introduction to modelling and simulation of particulate flows., Computational science and engineeringSIAM, PhiladelphiaCrossRef MATH
    6.Cremonesi M, Frangi A, Perego U (2011) A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput Struct 89:1086–1093CrossRef
    7.Franci A, Oñate E, Carbonell JM (2015) On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Accepted for publication in Int J Numer Methods Eng. doi:10.​1002/​nme.​4839
    8.Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989MathSciNet CrossRef MATH
    9.Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198:2750–2767CrossRef MATH
    10.Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004c) The particle finite element method—an overview. Int J Comput Methods 1(2):267–307CrossRef MATH
    11.Oñate E, Celigueta MA, Idelsohn SR (2006a) Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotechnia 1(4):237–252CrossRef
    12.Oñate E, García J, Idelsohn SR, Del Pin F (2006c) FIC formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches. Comput Methods Appl Mech Eng 195(23–24):3001–3037CrossRef MATH
    13.Oñate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20):1777–1800MathSciNet CrossRef MATH
    14.Oñate E (2009) Structural analysis with the finite element method, vol 1., Basis and solidsCIMNE-Springer, BarcelonaCrossRef MATH
    15.Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48(3):307–318MathSciNet CrossRef MATH
    16.Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int J Numer Methods Fluids 74(10):699–731MathSciNet CrossRef
    17.Avci B, Wriggers P (2012) A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J Appl Mech 79(1):7CrossRef
    18.Cundall PA, Strack ODL (1979) A discrete numerical method for granular assemblies. Geotechnique 29:47–65CrossRef
    19.Oñate E, Rojek J (2004b) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128CrossRef MATH
    20.Oñate E, Zárate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gandikota R, Ring KL (2015) A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput Part Mech 2(2):139–160CrossRef
    21.Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York
    22.Coussy O (2004) Poromechanics. Wiley, ChichesterMATH
    23.Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: the basis and fundamentals, 6th edn. Elsevier, Amsterdam
    24.Zienkiewicz OC, Taylor RL, Nithiarasu P (2005) The finite element method for fluid dynamics, 6th edn. Elsevier, SwanseaMATH
    25.Belytschko T, Liu WK, Moran B (2013) Non linear finite element for continua and structures, 2nd edn. Wiley, New York
    26.Donea J, Huerta A (2003) Finite element method for flow problems. Wiley, ChichesterCrossRef
    27.Jackson R (2000) The dynamics of fluidized particles. Cambridge monographs on mechanics. Cambridge University Press, Cambridge
    28.Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. By SIAMUF, Swedish Industrial Association for Multiphase Flows, ERCOFTAC (2008)
    29.Ansley RW, Smith TN (1967) Motion of spherical particles in a Bingham plastic. AIChE J 13(6):1193–1196CrossRef
    30.Brookes GF, Whitmore RL (1969) Drag forces in Bingham plastics. Rheologica Acta 8(4):472–480CrossRef
    31.Kelessidis VC, Mpandelis G (2004) Measurements and prediction of terminal velocity of solid spheres falling through stagnant pseudoplastic liquids. Powder Technol 147:117–125CrossRef
    32.Chien SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281CrossRef
    33.Shah SN, El Fadili Y, Chhabra RP (2007) New model for single spherical particle settling velocity in power law (visco-inelastic) fluids. Int J Multiph Flow 33:51–66CrossRef
    34.Walker RE, Mayes TM (1975) Design of muds for carrying capacity. J Pet Technol 27(7):893CrossRef
    35.Walker RE (1976) Hydraulics limits are set by flow restrictions. Oil Gas J 74:86–90
    36.Haider A, Levespiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70CrossRef
    37.Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int J Numer Methods Eng 60(1):255–281MathSciNet CrossRef MATH
    38.Kratos (2015) Open source software platform for multiphysics computations. CIMNE, Barcelona, www.​cimne.​com/​kratos
    39.GiD (2015) The personal pre/postprocessor. www.​gidhome.​com , CIMNE, Barcelona
    40.Breuer M, Rodi W (1994). Large-eddy simulation of turbulent flow through a straight square duct and a 180\(^{\circ }\) bend. In Fluid mechanics and its applications, Vol. 26, Voke PR, Kleiser L, Hollet JP (Eds.). Direct and large-eddy simulation I. Selected papers from the First ERCOFTAC workshop on direct and large-eddy simulation. Guildford, 27–30 Mar 1994. Kluwer Academic Publishers, Dordrecht, pp. 273–285
    41.He X, Luo LS (1997) Lattice Boltzmann model for the incompressible NavierStokes equation. J Stat Phys 88(3–4):927–944MathSciNet CrossRef MATH
    42.Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574MathSciNet CrossRef
  • 作者单位:Miguel Angel Celigueta (1)
    Kedar M. Deshpande (2)
    Salvador Latorre (1)
    Eugenio Oñate (1)

    1. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Norte UPC, 08034, Barcelona, Spain
    2. Weatherford International Ltd., Houston, USA
  • 刊物类别:Theoretical and Applied Mechanics; Computational Science and Engineering; Classical Continuum Physic
  • 刊物主题:Theoretical and Applied Mechanics; Computational Science and Engineering; Classical Continuum Physics;
  • 出版者:Springer International Publishing
  • ISSN:2196-4386
文摘
We present a procedure for coupling the finite element method (FEM) and the discrete element method (DEM) for analysis of the motion of particles in non-Newtonian fluids. Particles are assumed to be spherical and immersed in the fluid mesh. A new method for computing the drag force on the particles in a non-Newtonian fluid is presented. A drag force correction for non-spherical particles is proposed. The FEM-DEM coupling procedure is explained for Eulerian and Lagrangian flows, and the basic expressions of the discretized solution algorithm are given. The usefulness of the FEM-DEM technique is demonstrated in its application to the transport of drill cuttings in wellbores.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700