Electro-catalytic role of insulator/conductor interface in MgO/PEDOT composite electrodes for dye-sensitized solar cells
详细信息    查看全文
  • 作者:Hui Wang (1)
    Yunhang Hu (1)

    1. Department of Materials Science and Engineering
    ; Michigan Technological University ; Houghton ; MI ; 49931-1295 ; USA
  • 关键词:MgO ; DSSC ; counter ; electrode ; PEDOT
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:58
  • 期:1
  • 页码:101-106
  • 全文大小:725 KB
  • 参考文献:1. Goh C, McGehee MD. Organic semiconductors for low-cost solar cells. / The Bridge, 2005, 34: 33鈥?9
    2. Hamann TW, Jensen RA, Martinson ABF, Ryswyk HV, Hupp JT. Advancing beyond current generation dye-sensitized solar cells. / Energy Environ Sci, 2008, 1: 66鈥?8 CrossRef
    3. O鈥橰egan B, Gr盲tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. / Nature, 1991, 353: 737鈥?40 CrossRef
    4. Wei W, Wang H, Hu YH. A review on PEDOT-based counter electrodes for dye-sensitized solar cells. / Int J Energy Res, 2014, 38: 1099鈥?111 CrossRef
    5. Xia JB, Masaki N, Jiang KJ, Yanagida S. The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. / J Mater Chem, 2007, 17: 2845鈥?850 CrossRef
    6. Pringle JM, Armel V, Macfarlane DR. Electrodeposited PEDOT-onplastic cathodes for dye-sensitized solar cells. / Chem Commun, 2010, 46: 5367鈥?369 CrossRef
    7. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Vesso T, Cesar I, Liska P, Humphry-Baker R, Comte P, Pechy P, Gr盲tzel M. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. / J Electroche Soc, 2006, 153: A2255鈥揂2261 CrossRef
    8. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH. 3D Honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. / Angew Chem Int Ed, 2013, 52: 9210鈥?214 CrossRef
    9. Wang H, Hu YH. Graphene as a counter electrode material for dye-sensitized solar cells. / Energy Environ Sci, 2012, 5: 8182鈥?188 CrossRef
    10. Wang H, Hu YH. Electrolyte-induced precipitation of graphene oxide in its aqueous solution. / J Colloid Interface Sci, 2013, 391: 21鈥?7 CrossRef
    11. Wu MX, Lin X, Wang TH, Qiu JS, Ma TL. Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. / Energy Environ Sci, 2011, 4: 2308鈥?315 CrossRef
    12. Wang MK, Anghel AM, Marsan B, Ha NLC, Pootrakulchote N, Zakeeruddin SM, Gr盲tzel M. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. / J Am Chem Soc, 2009, 131: 15976鈥?5977 CrossRef
    13. Sun HC, Qin D, Huang SQ, Guo XZ, Li DM, Luo YH, Meng QB. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. / Energy Environ Sci, 2011, 4: 2630鈥?637 CrossRef
    14. Xin XK, He M, Han W, Jung JH, Lin ZQ. Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. / Angew Chem Int Ed, 2011, 50: 11739鈥?1742 CrossRef
    15. Wu MX, Lin X, Hagfeldt A, Qiu JS, Ma TL. Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. / Angew Chem Int Ed, 2011, 50: 3520鈥?524 CrossRef
    16. Jang JS, Ham DJ, Ramasamy E, Lee J, Lee JS. Platinum-free tungsten carbides as an efficient counter electrode for dyesensitized solar cells. / Chem Commun, 2010, 46: 8600鈥?602 CrossRef
    17. Ko AR, Oh JK, Lee YW, Han SB, Park KW. Characterizations of tungsten carbide as a non-Pt counter electrode in dye-sensitized solar cells. / Mater Lett, 2011, 65: 2220鈥?223 CrossRef
    18. Dou YY, Li GR, Song J, Gao XP. Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. / Phys Chem Chem Phys, 2012, 14: 1339鈥?342 CrossRef
    19. Wei W, Wang H, Hu YH. Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells. / J Mater Chem A, 2013, 1: 14350鈥?4357 CrossRef
    20. Li GR, Wang F, Jiang QW, Gao XP, Shen PW. Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dyesensitized solar cell. / Angew Chem Int Ed, 2010, 49: 3653鈥?656 CrossRef
    21. Zhang XY, Chen X, Dong SM, Liu ZH, Zhou XH, Yao JH, Pang SP, Xu HX, Zhang ZY, Li LF, Cui GL, Hierarchical micro/nanostructured titanium nitride spheres as a high-performance counter electrode for a dye-sensitized solar cell. / J Mater Chem, 2012, 22: 6067鈥?071 CrossRef
    22. Yeh MH, Lin LY, Lee CP, Wei HY, Chen CY, Wu CG, Vittal R, Ho KC. A composite catalytic film of PEDOT:PSS/TiN-NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell. / J Mater Chem, 2011, 21: 19021鈥?9029 CrossRef
    23. Wang H, Wei W, Hu YH. Efficient ZnO-based counter electrodes for dye-sensitized solar cells. / J Mater Chem A, 2013, 1: 6622鈥?628 CrossRef
    24. Wang H, Wei W, Hu YH. NiO as an efficient counter electrode catalyst for dye-sensitized solar cells. / Top Catal, 2014, 57: 607鈥?11 CrossRef
    25. Hu YH, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. / Adv Catal, 2004, 48: 297鈥?45
    26. Hu YH, Ruckenstein E. Binary MgO-based solid solution catalysts for methane conversion syngas. / Catal Rev-Sci Eng, 2002, 44: 423鈥?53 CrossRef
    27. Jeon KR, Lee SJ, Park CY, Lee HS, Shin SC. Energy band structure of the single crystalline MgO/ / n-Ge(001)heterojunction determined by X-ray photoelectron spectroscopy. / Appl Phys Lett, 2010, 97: 111910 CrossRef
    28. Kay A, Gr盲tzel M. Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. / Chem Mater, 2002, 14: 2930鈥?935 CrossRef
    29. Taguchi T, Zhang XT, Sutanto I, Tokuhiro K, Rao TN, Watanabe H, Nakamori T, Uragami M, Fujishima A. Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. / Chem Commun, 2003, 19: 2480鈥?481 CrossRef
    30. Snaith HJ, Ducati C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity sbsorbed photon-to-electron conversion efficiency. / Nano Lett, 2010, 10: 1259鈥?265 CrossRef
    31. Docampo P, Tiwana P, Sakai N, Miura H, Herz L, Murakami T. Unraveling the function of an MgO interlayer in both electrolyte and solid-state SnO2 based dye-sensitized solar cells. / J Phys Chem C, 2012, 116: 22840鈥?2846 CrossRef
    32. Green ANM, Palomares E, Haque SA, Kroon JM, Durrant JR. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. / J Phys Chem B, 2005, 109: 12525鈥?2533 CrossRef
    33. Mohanty SP, Bhargava P. Magnesia nanoparticles in liquid electrolyte for dye sensitized solar cells: an effective recombination suppressant? / Electrochimica Acta, 2013, 90: 291鈥?94 CrossRef
    34. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. / Phys Rev B, 1988, 37: 785鈥?89 CrossRef
    35. Hu YH, Ruckenstein E. / Ab initio quantum chemical calculations for fullerene cages with large holes. / J Chem Phys, 2003, 119: 10073鈥?0080 CrossRef
    36. Hu YH, Ruckenstein E. Endohedral chemistry of C60-based fullerene cages. / J Am Chem Soc, 2005, 127: 11277鈥?1282 CrossRef
    37. Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Lesczynski J. Chemisorption of hydrogen stoms on the sidewalls of armchair singlewalled carbon nanotubes. / J Phys Chem C, 2007, 111: 7376鈥?383 CrossRef
    38. Gauden PA, Wisniewski M. CO2 sorption on substituted carbon materials: computational chemistry studies. / Appl Surf Sci, 2007, 253: 5726鈥?731 CrossRef
    39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Revision D.01. Wallingford CT: Gaussian, Inc., 2004
    40. Gong F, Wang H, Xu X, Zhou G, Wang ZS. / In situ growth of Co085Se and Ni085Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. / J Am Chem Soc, 2012, 134: 10953鈥?0958 CrossRef
    41. Sakurai S, Jiang HQ, Takahashi M, Kobayashi K. Enhanced performance of a dye-sensitized solar cell with a modified poly(3,4-ethylenedioxythiophene)/TiO2/FTO counter electrode. / Electrochimica Acta, 2009, 54: 5463鈥?469 CrossRef
    42. Han LY, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R. Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance. / Appl Phys Lett, 2005, 86: 213501 CrossRef
    43. Joshi P, Zhang LF, Chen QL, Galipeau D, Fong H, Qiao Q. Electrospun Carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. / ACS Appl Mater Inter, 2010, 2: 3572鈥?577 CrossRef
    44. Koh JK, Kim J, Kim B, Kim JH, Kim E. Highly efficient, iodine-free dye-sensitized solar cells with solid-state synthesis of conducting polymers. / Adv Mater, 2011, 23: 1641鈥?646 CrossRef
    45. Hauch A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. / Electrochimica Acta, 2001, 46: 3457鈥?466 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
MgO has not been explored as a counter electrode materials for dye-sensitized solar cells (DSSCs) due to its lack of electrical conductivity. However, herein, it is reported that MgO insulator with conductive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) exhibited excellent performance as a counter electrode for DSSCs, leading to a high power conversion efficiency of 7.45%. Furthermore, it was revealed that the interface between MgO and PEDOT:PSS plays an important electro-catalytic role in the MgO/PEDOT composite counter electrodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700