Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions
详细信息    查看全文
  • 作者:E. A. Man ; D. Sera ; L. Mathe ; E. Schaltz ; L. Rosendahl
  • 关键词:Maximum power point tracking (MPPT) ; perturb ; and ; observe (P&O) ; oxide module ; temperature profile ; thermoelectric generator (TEG) systems
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:45
  • 期:3
  • 页码:1309-1315
  • 全文大小:1,553 KB
  • 参考文献:1.A. Montecucco, J. Siviter, and A.R. Knox, Appl. Energy 149, 248–258 (2015).CrossRef
    2.J. Hejtmánek, K. Kníxek, V. Svejda, P. Horna, and M. Sikora, J. Electron. Mater. 43, 3726–3732 (2014).CrossRef
    3.H. Wang, R. McCarty, J.R. Salvador, A. Yamamoto, and J. König, J. Electron. Mater. 43, 2274–2286 (2014).CrossRef
    4.M. Tahhan and A.M. Bazzi, Power and Energy Conference at Illinois (PECI), 2014 (2014), pp. 1–5
    5.W.H. Chen, C.Y. Liao, C.I. Hung, and W.L. Huang, Energy 45, 874–881 (2012).CrossRef
    6.N.Q. Nguyen and K.V. Pochiraju, Appl. Therm. Eng. 51, 1–9 (2013).CrossRef
    7.C.C. Bomberger, P.M. Attia, A.K. Prasad, and J.M.O. Zide, Appl. Therm. Eng. 56, 152–158 (2013).CrossRef
    8.L.E. Juanico, F.N. Rinalde, E. Taglialavore, and M. Molina, J. Electron. Mater. 42, 1846–1854 (2013).CrossRef
    9.D. Tatarinov, D. Wallig, and G. Bastian, J. Electron. Mater. 41, 1706–1712 (2012).CrossRef
    10.G. Wu and X. Yu, Bioengineering Conference (NEBEC), 2013 39th Annual Northeast (2013), pp. 157–158.
    11.I. Laird, H. Lovatt, N. Savvides, D. Lu and V.G. Agelidis, Power Engineering Conference, 2008. AUPEC ’08. Australasian Universities (2008), pp. 1–6
    12.N. Phillip, O. Maganga, K.J. Burnham, M.A. Ellis, S. Robinson, J. Dunn, and C. Rouaud, J. Electron. Mater. 42, 1900–1906 (2013).CrossRef
    13.K. Bunthern, B. Long, G. Christophe, D. Bruno and M. Pascal, International Conference On Green Energy, 2014 (2014), pp. 220–226.
    14.D. Champier, C. Favarel, J.P. Bédécarrats, T. Kousksou, and J.F. Rozis, J. Electron. Mater. 42, 1888–1899 (2013).CrossRef
    15.Z. Zhe, L. Wenbin, and K. Jiangming, Energy Convers. Manage. 97, 178–187 (2015).CrossRef
    16.M. Oku, T. Sakoda, N. Hayashi and D. Tashima, International Conference on Renewable Energy Research and Application (ICRERA), 2014 (2014), pp. 222–228
    17.M. Brazdil and J. Pospisil, J. Electron. Mater. 42, 2198–2202 (2013).CrossRef
    18.A.M. Karim, J.A. Federici, and D.G. Vlachos, Power Sour. 179, 113–120 (2008).CrossRef
    19.A. Killander and J.C. Bass, Fifteenth International Conference on Thermoelectrics, 1996 (1996), pp. 390–393
    20.R.Y. Nuwayhid, A. Shihadeh, and N. Ghaddar, Energy Convers. Manage. 43, 1631–1643 (2005).CrossRef
    21.S.M. O’Shaughnessy, M.J. Deasy, C.E. Kinsella, J.V. Doyle, and A.J. Robinson, Appl. Energy 102, 374–385 (2013).CrossRef
    22.D. Champier, J.P. Bédécarrats, K. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet, Energy 36, 1518–1526 (2011).CrossRef
    23.L. Bannar-Martin, A. Manthanwar, B. Patel, D. Barker and A. Morrison, Portable power generation—GlobalTech energy challenge 2013 (2013).
    24.A.D.J. Kaasjager and G.P.G. Moeys, Global Humanitarian Technology Conference (GHTC), 2012 IEEE (2012), pp. 6–11
    25.A.S. Adavbiele, J. Energy Tech. Pol. 3, 16–33 (2013).
    26.E. Hatzikraniotis, Proceedings of the International Congress on Advances in Applied Physics and Materials Science (Antalya, 2011).
    27.L.I. Anatychuk, O.J. Luste, and R.V. Kuz, J. Electron. Mater. 40, 1326–1331 (2011).CrossRef
    28.CENELEC, European standard DS/EN 50530–overall efficiency of grid connected photovoltaic inverters (2010).
  • 作者单位:E. A. Man (1)
    D. Sera (1)
    L. Mathe (1)
    E. Schaltz (1)
    L. Rosendahl (1)

    1. Department of Energy Technology, Aalborg University, Pontoppidanstraede 101, 9220, Aalborg, Denmark
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium–manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG system to provide ∼95% MPPT efficiency when the input temperature is changing at 5°C/s.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700