Sequence variation at the three chloroplast loci (matK, rbcL, trnH-psbA) in the Triticeae tribe (Poaceae): comments on the relationships a
详细信息    查看全文
  • 作者:Wojciech Bieniek (1)
    Marta Mizianty (1)
    Marek Szklarczyk (2)

    1. Department of Vascular Plant Systematics and Phytogeography
    ; W. Szafer Institute of Botany ; Polish Academy of Sciences ; ul. Lubicz 46 ; 31-512 ; Krak贸w ; Poland
    2. Unit of Genetics
    ; Plant Breeding and Seed Science ; Institute of Plant Biology and Biotechnology ; Agricultural University of Krakow ; al. 29 Listopada 54 ; 31-425 ; Krak贸w ; Poland
  • 关键词:Triticeae ; Chloroplast DNA ; Molecular phylogeny ; DNA barcoding
  • 刊名:Plant Systematics and Evolution
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:301
  • 期:4
  • 页码:1275-1286
  • 全文大小:999 KB
  • 参考文献:1. Adderley, S, Sun, G (2014) Molecular evolution and nucleotide diversity of nuclear plastid phosphoglycerate kinase (PGK) gene in Triticeae (Poaceae). Gene 533: pp. 142-148 CrossRef
    2. Anamthawat-J贸nsson, K, B枚dvarsd贸ttir, SK (2001) Genomic and genetic relationships among species of Leymus (Poaceae: Triticeae) inferred from 18S-26S ribosomal genes. Amer J Bot 88: pp. 553-559 CrossRef
    3. Blattner, FR (2009) Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breed Sci 59: pp. 471-480 CrossRef
    A DNA barcode for land plants. Proc Natl Acad Sci USA 106: pp. 12794-12797 CrossRef
    4. Clayton, WD, Renvoize, SA (1986) Genera graminum: grasses of the world. H.M.S.O, London
    5. Culumber, CM, Larson, SR, Jensen, KB, Jones, TA (2011) Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles. Pl Syst Evol 294: pp. 207-225 CrossRef
    6. Dewey, DR The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson, JP eds. (1984) Gene manipulation in plant improvement. Plenum Publ. Corp, New York, pp. 209-279 CrossRef
    7. Ellneskog-Staam, P, Taketa, S, Salomon, B, Anamthawat-J贸nsson, K, Bothmer, R (2006) Identifying the genome of wood barley Hordelymus europaeus (Poaceae: Triticeae). Hereditas 143: pp. 103-112 CrossRef
    8. Escobar, JS, Scornavacca, C, Cenci, A, Guilhaumon, C, Santoni, S, Douzery, EJP, Ranwez, V, Gl茅min, S, David, J (2011) Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol Biol 11: pp. 181 CrossRef
    9. Fan, X, Sha, LN, Yu, SB, Wu, DD, Chen, XH, Zhuo, XF, Zhang, HQ, Kang, HY, Wang, Y, Zheng, YL, Zhou, YH (2013) Phylogenetic reconstruction and diversification of the Triticeae (Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene data. Biochem Syst Ecol 50: pp. 346-360 CrossRef
    10. Guo, GY, Yang, RW, Ding, CB, Fan, X, Zhang, L, Zhou, YH (2014) Phylogenetic relationships among Leymus and related diploid genera (Triticeae: Poaceae) based on chloroplast trnQ鈥搑ps16 sequences. Nordic J Bot.
    11. Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: pp. 95-98
    12. Hebert, PDN, Cywinska, A, Ball, SL, DeWaard, JR (2003) Biological identifications through DNA barcodes. Proc Roy Soc London Ser B Biol Sci 270: pp. 313-321 CrossRef
    13. Hilu, KW, Alice, LA, Liang, H (1999) Phylogeny of Poaceae inferred from matK sequences. Ann Missouri Bot Gard 86: pp. 835-851 CrossRef
    14. Hollingsworth, PM, Graham, SW, Little, DP (2011) Choosing and using a plant DNA barcode. PLoS One 6: pp. e19254 CrossRef
    15. Jakob, SS, Blattner, FR (2010) Two extinct diploid progenitors were involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. Mol Phyl Evol 55: pp. 650-659 CrossRef
    16. Jauhar, PP (1988) A reassessment of genome relationships between Thinopyrum bessarabicum and T. elongatum of the Triticeae. Genome 30: pp. 903-914 CrossRef
    17. Kim, KJ, Lee, H-L (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cells 19: pp. 104-113
    18. Kress, WJ, Wurdack, KJ, Zimmer, EA, Weigt, LA, Janzen, DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102: pp. 8369-8374 CrossRef
    19. L枚ve, A (1984) Conspectus of Triticeae. Feddes Repert 95: pp. 425-521
    20. Mahelka, V, Kopecky, D, Pa拧tov谩, L (2011) On the genome constitution andevolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evol Biol 11: pp. 127 CrossRef
    21. Mason-Gamer, RJ (2013) Phylogeny of a Genomically Diverse Group of Elymus (Poaceae) Allopolyploids Reveals Multiple Levels of Reticulation. PLoS One 8: pp. e78449 CrossRef
    22. Melderis, A Elymus. In: Tuti, TG, Heywood, VH, Burges, NA, Moore, DM, Valentine, DH, Walters, SM, Webb, DA eds. (1980) Flora Europaea 5. Cambridge University Press, Cambridge, pp. 192-198
    23. Mizianty, M, Frey, L, Szczepaniak, M (1999) The Agropyron-Elymus complex (Poaceae) in Poland: nomenclatural problems. Fragm Flor Geobot 44: pp. 3-33
    24. Naghavi, MR, Rad, MB, Riahi, M, Taleie, A (2013) Phylogenetic analysis in some Hordeum species (Triticeae; Poaceae) based on two single-copy nuclear genes encoding acetyl-CoA carboxylase. Biochem Syst Ecol 47: pp. 148-155 CrossRef
    25. Ni, Y, Asamoah-Odei, N, Sun, G (2011) Maternal origin, genome constitution and evolutionary relationships of polyploid Elymus species and Hordelymus europaeus. Biol Plant 55: pp. 68-74 CrossRef
    26. Petersen, G, Seberg, O (1997) Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol Phyl Evol 7: pp. 217-230 CrossRef
    27. Petersen, G, Seberg, O (2008) Phylogenetic relationships of allotetraploid Hordelymus europaeus (L.) Harz (Poaceae: Triticeae). Pl Syst Evol 273: pp. 87-95 CrossRef
    28. Redinbaugh, MG, Jones, T, Zhang, Y (2000) Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome 43: pp. 846-852 CrossRef
    29. Shaw, J, Lickey, EB, Beck, JT, Farmer, SB, Liu, W, Miller, J, Siripun, KC, Winder, CT, Schilling, EE, Small, RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer J Bot 92: pp. 142-166 CrossRef
    30. Shaw, J, Lickey, EB, Schilling, EE, Small, RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94: pp. 275-288 CrossRef
    31. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    32. Bothmer, R, Lu, B-R, Linde-Laursen, I (1994) Intergeneric hybridization and C-banding patterns in Hordelymus (Triticeae, Poaceae). Pl Syst Evol 189: pp. 259-266 CrossRef
    33. Wang, RR-C (1985) Genome analysis of Thinopyrum bessarabicum and T. elongatum. Canad J Genet Cytol 27: pp. 722-728 CrossRef
    34. Wang, RR-C, Bothmer, R, Dvorak, J, Fedak, G, Linde-Laursen, I, Muramatsu, M Genome symbols in the Triticeae (Poaceae). In: Wang, RR-C, Jensen, KB, Jaussi, C eds. (1995) Proceedings of the Second International Triticeae Symposium. Forage and Range Laboratory, USDA-ARS, Logan, pp. 29-34
    35. Whitlock, BA, Hale, AM, Groff, PA (2010) Intraspecific inversions pose a challenge for the trnH-psbA plant DNA barcode. PLoS One 5: pp. e11533 CrossRef
    36. Yan, C, Sun, G (2012) Multiple origins of allopolyploid wheatgrass Elymus caninus revealed by RPB2, PepC and TrnD/T genes. Mol Phyl Evol 64: pp. 441-451 CrossRef
    37. Yen, C, Yang, J, Yen, Y (2005) Hitoshi Kihara, 脕skell L枚ve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotaxon Sin 43: pp. 82-93 CrossRef
    38. Yu, J, Xue, JH, Zhou, SL (2011) New universal matK primers for DNA barcoding angiosperms. J Syst Evol 49: pp. 176-181 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Ecology
    Plant Anatomy and Development
    Plant Systematics/Taxonomy/ Biogeography
  • 出版者:Springer Wien
  • ISSN:1615-6110
文摘
This study presents a phylogenetic analysis of the selected representatives of the Triticeae tribe and the assessment of possibilities of species identification on the basis of sequence variation in the three regions from the chloroplast DNA (matK, rbcL and trnH-psbA). The analysis included diploid and polyploid species of the following genomic compositions: E b , E e , H, I, Ns, St, Ta, Xu, NsXm, XoXr, XuXu, E b E e , E b E b E e , E b E e St, StH, StStH. The obtained matK and rbcL sequences revealed three well-supported clades: (1) Elymus, Lopophyrum, Pseudoroegneria, Thinopyrum (genomes E b , E e , St, StH, E b E e , E b E b E e , E b E e St, StStH); (2) Leymus, Hordelymus, Psathyrostachys (genomes Ns, NsXm, XoXr); (3) Hordeum (genomes H, I, Xu). This results support the view that the analyzed Elymus species (E. caninus, E. repens) acquired the Pseudoroegneria St genome maternally. They also indicate that Hordelymus europaeus carries the Ns genome from Psathyrostachys and point at the maternal origin of this component. Moreover, the presented results confirm the contribution of Psathyrostachys in the origin of Leymus as well as indicate the maternal character of this input. Differentiation observed within the Hordeum clade aligns with the alleged genome composition of the analyzed species. The DNA barcoding potential of the analyzed sequences was low. Nevertheless, several informative polymorphisms were found like e.g. the matK substitution specific for Thinopyrum bessarabicum, the trnH-psbA substitution differentiating Leymus arenarius from Psathyrostachys juncea and the group of species-specific deletions within trnH-psbA. In the DNA barcoding context we have also demonstrated negative importance of the high frequency cpDNA inversion leading to intraspecific variation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700