Free cyanide and thiocyanate biodegradation by Pseudomonas aeruginosa STK 03 capable of heterotrophic nitrification under alkaline conditions
详细信息    查看全文
  • 作者:Lukhanyo Mekuto ; Seteno Karabo Obed Ntwampe ; Margaret Kena…
  • 关键词:Biodegradation ; Cyanide ; Heterotrophic nitrification ; Pseudomonas aeruginosa STK 03 ; Thiocyanate
  • 刊名:3 Biotech
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:6
  • 期:1
  • 全文大小:595 KB
  • 参考文献:Adjei MD, Ohta Y (2000) Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3. J Biosci Bioeng 89:274–277CrossRef
    Akcil A (2003) Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol Adv 21:501–511CrossRef
    Akcil A, Mudder T (2003) Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol Lett 25:445–450CrossRef
    Akcil A, Karahan AG, Ciftci H, Sagdic O (2003) Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.). Miner Eng 16:643–649CrossRef
    Botz M, Mudder T, Akcil A (2005) Cyanide treatment: physical, chemical and biological processes. In: Adams M (ed) Advances in gold ore processing. Elsevier Ltd, Amsterdam
    Donato DB, Nichols O, Possingham H, Moore M, Ricci PF, Noller BN (2007) A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ Int 33:974–984CrossRef
    Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236CrossRef
    Gould DW, King M, Mohapatra BR, Cameron RA, Kapoor A, Koren DW (2012) A critical review on destruction of thiocyanate in mining effluents. Miner Eng 34:38–47CrossRef
    Grigor’eva NV, Kondrat’eva TF, Krasil’nikova EN, Karavaiko GI (2006) Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains. Microbiology 75:266–273
    Grigor’eva NV, Smirnova YV, Terekhova SV, Karavaiko GI (2008) Isolation of an aboriginal bacterial community capable of utilizing cyanide, thiocyanate, and ammonia from metallurgical plant wastewater. Appl Biochem Microbiol 44:502–506
    Grigor’eva NV, Smirnova YV, Dulov LE (2009) Thiocyanate decomposition under aerobic and oxygen-free conditions by the aboriginal bacterial community isolated from the waste water of a metallurgical works. Microbiology 78:402–406
    Han Y, Jin X, Wang Y, Liu Y, Chen X (2014) Inhibitory effect of cyanide on nitrification process and its eliminating method in a suspended activated sludge process. Environ Sci Pollut Res 21:2706–2713CrossRef
    Hovinen J, Lahti M, Vilpo J (1999) Spectrophotometric determination of thiocyanate in human saliva. J Chem Educ 76:1281–1282CrossRef
    Ji B, Yang K, Wang H, Zhou J, Zhang H (2015) Aerobic denitrification by Pseudomonas stutzeri C3 incapable of heterotrophic nitrification. Bioprocess Biosyst Eng 38:407–409CrossRef
    Kao CM, Liu JK, Lou HR, Lin CS, Chen SC (2003) Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50:1055–1061CrossRef
    Karavaiko GI, Kondrat’eva TF, Savari EE, Grigor’eva NV, Avakyan ZA (2000) Microbial degradation of cyanide and thiocyanate. Microbiology 69:167–173
    Kim YM, Park D, Lee DS, Park JM (2008) Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J Hazard Mater 152:915–921CrossRef
    Kim YM, Cho HU, Lee DS, Park D, Park JM (2011a) Comparative study of free cyanide inhibition on nitrification and denitrification in batch and continuous flow systems. Desalination 279:439–444CrossRef
    Kim YM, Lee DS, Park C, Park D, Park JM (2011b) Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process. Water Res 45:1267–1279CrossRef
    Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 50–51:13–29CrossRef
    Luque-Almagro VM, Huertas M-J, Martínez-Luque M, Moreno-Vivián C, Roldán MD, García-Gil LJ, Castillo F, Blasco R (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947CrossRef
    Maniyam MN, Sjahrir F, Ibrahim AL (2011) Bioremediation of cyanide by optimized resting cells of Rhodococcus strains isolated from Peninsular Malaysia. Int J Biosci Biochem Bioinf 1:98–102
    Mekuto L, Ntwampe SKO, Jackson VA (2013) Biodegradation of free cyanide using Bacillus safensis, Lichenformis and Tequilensis strains: a bioprocess supported solely with whey. J Bioremediation Biodegrad S18:004
    Meyers PR, Gokool P, Rawlings DE, Woods DR (1991) An efficient cyanide-degrading Bacillus pumilus strain. J Gen Microbiol 137:1397–1400CrossRef
    Mudder T, Botz M (2004) Cyanide and society: a critical review. Eur J Miner Process Environ Prot 4:62–74
    Mudder TI, Botz M, Smith A (2001) Chemistry and treatment of cyanidation wastes. Mining Journal Books, London
    Patil YB, Paknikar KM (1999) Removal and recovery of metal cyanides using a combination of biosorption and biodegradation processes. Biotechnol Lett 21:913–919CrossRef
    Rider BF, Mellon MG (1946) Colorimetric determination of nitrites. Ind Eng Chem Anal Ed 18:96–99CrossRef
    Stott MB, Franzmann PD, Zappia LR, Watling HR, Quan LP, Clark BJ, Houchin MR, Miller PC, Williams TL (2001) Thiocyanate removal from saline CIP process water by a rotating biological contactor, with reuse of the water for bioleaching. Hydrometallurgy 62:93–105CrossRef
    van Hille RP, Dawson E, Edward C, Harrison STL (2015) Effect of thiocyanate on BIOX® organisms: inhibition and adaptation. Miner Eng 75:110–115CrossRef
    van Zyl AW, Huddy R, Harrison STL, van Hille RP (2015) Evaluation of the ASTERTM process in the presence of suspended solids. Miner Eng 76:72–80CrossRef
    Zhang J, Wu P, Hao P, Yu Z (2011) Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour Technol 102:9866–9869CrossRef
  • 作者单位:Lukhanyo Mekuto (1)
    Seteno Karabo Obed Ntwampe (1)
    Margaret Kena (1)
    Mhlangabezi Tolbert Golela (1)
    Olusola Solomon Amodu (1)

    1. Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
  • 刊物主题:Biotechnology; Agriculture; Cancer Research; Bioinformatics; Stem Cells; Biomaterials;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2190-5738
文摘
An alkali-tolerant bacterium, Pseudomonas aeruginosa STK 03 (accession number KR011154), isolated from an oil spill site, was evaluated for the biodegradation of free cyanide and thiocyanate under alkaline conditions. The organism had a free cyanide degradation efficiency of 80 and 32 % from an initial concentration of 250 and 450 mg CN−/L, respectively. Additionally, the organism was able to degrade thiocyanate, achieving a degradation efficiency of 78 and 98 % from non- and free cyanide spiked cultures, respectively. The organism was capable of heterotrophic nitrification but was unable to denitrify aerobically. The organism was unable to degrade free cyanide in the absence of a carbon source, but it was able to degrade thiocyanate heterotrophically, achieving a degradation efficiency of 79 % from an initial concentration of 250 mg SCN−/L. Further increases in thiocyanate degradation efficiency were only observed when the cultures were spiked with free cyanide (50 mg CN−/L), achieving a degradation efficiency of 98 % from an initial concentration of 250 mg SCN−/L. This is the first study to report free cyanide and thiocyanate degradation by Pseudomonas aeruginosa. The higher free cyanide and thiocyanate tolerance of the isolate STK 03, which surpasses the stipulated tolerance threshold of 200 mg CN−/L for most organisms, could be valuable in microbial consortia for the degradation of cyanides in an industrial setting. Keywords Biodegradation Cyanide Heterotrophic nitrification Pseudomonas aeruginosa STK 03 Thiocyanate

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700