Understanding the simultaneous biodegradation of thiocyanate and salicylic acid by Paracoccus thiocyanatus and Pseudomonas putida
详细信息    查看全文
  • 作者:R. G. Combarros ; S. Collado ; A. Laca…
  • 关键词:Biodegradation ; Co ; culture ; Flow cytometry ; Salicylic acid ; Substrate inhibition ; Thiocyanate
  • 刊名:International Journal of Environmental Science and Technology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:13
  • 期:2
  • 页码:649-662
  • 全文大小:791 KB
  • 参考文献:Agarry SE, Solomon BO (2008) Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int J Environ Sci Technol 5:223–232. doi:10.​1007/​BF03326016 CrossRef
    Agarry SE, Audu TOK, Solomon BO (2009) Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. Int J Environ Sci Technol 6:443–450. doi:10.​1007/​BF03326083 CrossRef
    Alonso S, Rendueles M, Díaz M (2012) Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production. Appl Microbiol Biotechnol 96:1465–1477. doi:10.​1007/​s00253-012-4254-2 CrossRef
    Arutchelvan V, Kanakasabai V, Nagarajan S, Muralikrishnan V (2005) Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J Hazard Mater 127:238–243. doi:10.​1016/​j.​jhazmat.​2005.​04.​043 CrossRef
    Banerjee G (1996) Phenol- and thiocyanate-based wastewater treatment in RBC reactor. J Environ Eng 122:941–948CrossRef
    Cai S, Li X, Cai T, He J (2013) Degradation of piperazine by Paracoccus sp. TOH isolated from activated sludge. Bioresour Technol 130:536–542. doi:10.​1016/​j.​biortech.​2012.​12.​095 CrossRef
    Chaudhari A, Kodam K (2010) Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp. Appl Microbiol Biotechnol 85:1167–1174. doi:10.​1007/​s00253-009-2299-7 CrossRef
    Collado S, Laca A, Díaz M (2009) Wet oxidation of thiocyanate under different pH conditions: kinetics and mechanistic analysis, vol 22. American Chemical Society, Washington
    Collado S, Garrido L, Laca A, Díaz M (2010) Wet oxidation of salicylic acid solutions. Environ Sci Technol 44:8629–8635CrossRef
    Combarros RG, Rosas I, Lavín AG, Rendueles M, Díaz M (2014) Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater. Water Air Soil Pollut 225:1–12. doi:10.​1007/​s11270-013-1858-9 CrossRef
    Combarros RG, Collado S, Laca A, Díaz M (2015) Conditions and mechanisms in thiocyanate biodegradation. J Residuals Sci Technol 12(3):113–124 CrossRef
    Díaz M, García AI, García LA (1996) Mixing power, external convection, and effectiveness in bioreactors. Biotechnol Bioeng 51:131–140. doi:10.​1002/​(SICI)1097-0290(19960720)51:​2<131:​:​AID-BIT1>3.​0.​CO;2-K CrossRef
    Fall C, Millán-Lagunas E, Bâ KM, Gallego-Alarcón I, García-Pulido D, Díaz-Delgado C, Solís-Morelos C (2012) COD fractionation and biological treatability of mixed industrial wastewaters. J Environ Manag 113:71–77. doi:10.​1016/​j.​jenvman.​2012.​08.​032 CrossRef
    Foladori P, Bruni L, Tamburini S, Ziglio G (2010) Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res 44:3807–3818. doi:10.​1016/​j.​watres.​2010.​04.​027 CrossRef
    Fuentes MS, Alvarez A, Saez JM, Benimeli CS, Amoroso MJ (2014) Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains. Int J Environ Sci Technol 11:1147–1156. doi:10.​1007/​s13762-013-0314-0 CrossRef
    Hadibarata T, Teh Z (2014) Optimization of pyrene degradation by white-rot fungus Pleurotus pulmonarius F043 and characterization of its metabolites. Bioprocess Biosyst Eng 37:1679–1684. doi:10.​1007/​s00449-014-1140-6 CrossRef
    Herrero M, Stuckey DC (2014) Bioaugmentation and its application in wastewater treatment: a review. Chemosphere. doi:10.​1016/​j.​chemosphere.​2014.​10.​033
    Hewitt CJ, Nebe-von-Caron G (2004) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv Biochem Eng Biot 89:197–223
    Hsu Y-C, Yang H-C, Chen J-H (2004) The enhancement of the biodegradability of phenolic solution using preozonation based on high ozone utilization. Chemosphere 56:149–158. doi:10.​1016/​j.​chemosphere.​2004.​02.​011 CrossRef
    Huang H, Feng C, Pan X, Wu H, Ren Y, Wu C, Wei C (2013) Thiocyanate oxidation by coculture from a coke wastewater treatment plant. J Biomater Nanobiotechnol 4:37–46CrossRef
    Ibáñez SG, Merini LJ, Barros GG, Medina MI, Agostini E (2014) Vicia sativa–rhizospheric bacteria interactions to improve phenol remediation. Int J Environ Sci Technol 11:1679–1690. doi:10.​1007/​s13762-013-0357-2 CrossRef
    Juang R-S, Tsai S-Y (2006) Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochem Eng J 31:133–140. doi:10.​1016/​j.​bej.​2006.​05.​025 CrossRef
    Kim S-J, Katayama Y (2000) Effect of growth conditions on thiocyanate degradation and emission of carbonyl sulfide by Thiobacillus thioparus THI115. Water Res 34:2887–2894. doi:10.​1016/​S0043-1354(00)00046-4 CrossRef
    Kim YM, Park D, Jeon CO, Lee DS, Park JM (2008) Effect of HRT on the biological pre-denitrification process for the simultaneous removal of toxic pollutants from cokes wastewater. Bioresour Technol 99:8824–8832. doi:10.​1016/​j.​biortech.​2008.​04.​050 CrossRef
    Kwon H, Woo S, Park J (2002) Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants. Biotechnol Lett 24:1347–1351. doi:10.​1023/​A:​1019825404825 CrossRef
    Lei G, Ren H, Ding L, Wang F, Zhang X (2010) A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park. Bioresour Technol 101:5852–5861. doi:10.​1016/​j.​biortech.​2010.​03.​025 CrossRef
    Li H-q, Han H-j, Du M-a, Wang W (2011) Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor. Bioresour Technol 102:4667–4673. doi:10.​1016/​j.​biortech.​2011.​01.​029 CrossRef
    Loh K-C, Yu Y-G (2000) Kinetics of carbazole degradation by Pseudomonas putida in presence of sodium salicylate. Water Res 34:4131–4138. doi:10.​1016/​S0043-1354(00)00174-3 CrossRef
    Marañón E, Vázquez I, Rodríguez J, Castrillón L, Fernández Y, López H (2008) Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale. Bioresour Technol 99:4192–4198. doi:10.​1016/​j.​biortech.​2007.​08.​081 CrossRef
    McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10. doi:10.​1186/​2046-9063-8-10 CrossRef
    McLaughlin H, Farrell A, Quilty B (2006) Bioaugmentation of activated sludge with two Pseudomonas putida strains for the degradation of 4-chlorophenol. J Environ Sci Health Part A 41:763–777. doi:10.​1080/​1093452060061434​8 CrossRef
    Mikesková H, Novotný Č, Svobodová K (2012) Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl Microbiol Biotechnol 95:861–870. doi:10.​1007/​s00253-012-4234-6 CrossRef
    Nielsen TH, Sjøholm OR, Sørensen J (2009) Multiple physiological states of a Pseudomonas fluorescens DR54 biocontrol inoculant monitored by a new flow cytometry protocol. FEMS Microbiol Ecol 67:479–490CrossRef
    Qiao L, Wang J-l (2010) Microbial degradation of pyridine by* Paracoccus sp. isolated from contaminated soil. J Hazard Mater 176:220–225. doi:10.​1016/​j.​jhazmat.​2009.​11.​016 CrossRef
    Quirós C, Herrero M, García LA, Díaz M (2007) Application of flow cytometry to segregated kinetic modeling based on the physiological states of microorganisms. Appl Environ Microbiol 73:3993–4000. doi:10.​1128/​AEM.​00171-07 CrossRef
    Sharma NK, Philip L, Murty Bhallamudi s (2012) Aerobic degradation of phenolics and aromatic hydrocarbons in presence of cyanide. Bioresour Technol 121:263–273. doi:10.​1016/​j.​biortech.​2012.​06.​039 CrossRef
    Shivaraman N, Kumaran P, Pandey RA, Chatterjee SK, Chowdhary KR, Parhad NM (1985) Microbial degradation of thiocyanate, phenol and cyanide in a completely mixed aeration system. Environ Pollut Ser A Ecol Biol 39:141–150. doi:10.​1016/​0143-1471(85)90012-1 CrossRef
    Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG (2004) Anaerobic growth of the haloalkaliphilic denitrifying sulfuroxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 150:2435–2442CrossRef
    Staib C, Lant P (2007) Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater. Biochem Eng J 34:122–130. doi:10.​1016/​j.​bej.​2006.​11.​029 CrossRef
  • 作者单位:R. G. Combarros (1)
    S. Collado (1)
    A. Laca (1)
    M. Díaz (1)

    1. Department of Chemical and Environmental Technology, University of Oviedo, c/Julián Clavería s/n, 33071, Oviedo, Asturias, Spain
  • 刊物主题:Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-2630
文摘
Phenolic and cyanide compounds, which frequently appear mixed in several industrial effluents, are difficult to be biodegraded under certain conditions. In this work, salicylic acid (SA) and thiocyanate (SCN−) were selected as model pollutants of these two families and experiments of biodegradation with specific microorganisms were developed. It was found that the best well-known bacteria able to biodegrade each one of these pollutants, Pseudomonas putida for SA and Paracoccus thiocyanatus for SCN−, do not biodegrade the other one. Therefore, the co-culture was required, producing interesting interaction phenomena. When both pollutants were simultaneously biodegraded, a commensalism effect was observed improving SCN− removal. Experimental data for SCN− and SA removals were successfully fitted to zero reaction kinetic orders, with induction time in the case of SCN−, and substrate dependences were fitted to Tessier models. A flow cytometry method was developed and employed to obtain the evolution of the viable, damaged and dead cells for different substrate concentration and the degree of agglomeration in the co-culture experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700